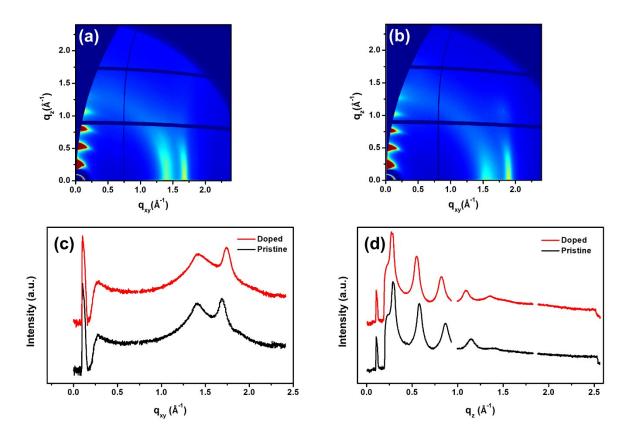

Electronic Supplementary Information

Thermoelectric power factor exceeding 50 μ W m⁻¹ K⁻² from water-borne colloids of polymer semiconductors


Geon-Hee Nam, $^{\rm a}$ Jae Un Ha $^{\rm a}$ and Dae Sung Chung $^{\rm b}$

^a Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea

^b Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea. E-mail: dchung@postech.ac.kr

Fig. S1 Output curves of colloid based transistors for (a) 4 h, (b) 8 h, (c) 12 h, and (d) 16 h of dialysis time.

Fig. S2 2D GIXD data of (a) pristine PBTTT film and (b) F4TCNQ vapor doped film from 8 h of dialysis time. Apparent diffraction peak shift of chain axis and π – π stacking was shown along the q_{xy} direction. Scattering profiles along with (c) q_{xy} and (d) q_z for pristine and F4TCNQ doped PBTTT films are summarized. π – π stacking distance of doped film was decreased from ~3.72 Å to ~3.61 Å, and lamella stacking distance of doped film was increased from ~21.84 Å to ~ 22.90 Å.

Polymer	Dopant	S (μV/K)	σ (S/cm)	PF _{max} (µW/m ⁻¹ K ⁻²)	Ref
PBTTT	F2TCNQ	42	670	120	1
PBTTT	FTS	33 ±5	1000±70	110±34	2
PDPPSe-12	FeCl ₃	62.3	949	364	3
PDPP3T	FeCl ₃	226	55	276	4
C8TBT	FeCl ₃	335	1.17	13.11	5
SWCNT/ C ₈ BTBT	TCNQ	56.6±1.1	885.4±27.0	284.6±6.1	6
P(NDIOD-T2)	N-DMBI	-850	0.008	0.6	7
PBTTT	F4TCNQ	495.96	2.23	54.89	This work

 Table S1. Summarized some reported organic thermoelectric devices.

Reference

- 1. Sci. Adv. 2017, 3, e1700434.
- 2. ACS Macro Lett. 2016, 5, 268 272.
- 3. Angew. Chem. Int. Ed. 2019, 58, 18994 18999.
- 4. Sci. Rep. 2017, 7, 44704.
- 5. Polym. Chem. 2017, 8, 4644-4650
- 6. J. Mater. Chem. A, 2019, 7, 24982–24991.
- 7. Adv. Mater. 2014, 26, 2825–2830.