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Figure S1 Rietveld refinement for the XRD patterns of (a) c-NiNb2O6 and (b) r-

NiNb2O6. The results reveal the single phase of columbite and rutile structure for c-

NiNb2O6 and r-NiNb2O6, respectively.
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Figure S2 Illustration of the fitting results of the Ni 2p profile of r-NiNb2O6 with Ni2+-

only peaks. The deviation of the fitted curve from experimental data suggests that an 

extra peak by the lower energy side of Ni 2p3/2 main peak is required for fitting.
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Figure S3 (a) XRD patterns for c-NiNb2O6 at 180 K < T < 340 K. (b) The enlarged areas 

as indicated by dashed rectangles in (a). The temperature in situ XRD results reveal 

no phase transition, thus the dielectric anomaly in this temperature range is 

considered in terms of long-range electron conduction.   
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Figure S4 Frequency dependent ac conductivity σ’
 curves at 300 K ~ 360 K for r-

NiNb2O6. The open symbols are experimental data and the solid curves are fitted 

results by  relationship. The dashed arrow depicts the shift in the 𝜎'(𝑓) = 𝜎0 + 𝜎𝑎𝑐𝑓
𝑠

relaxation frequency of RXL process. It can be illustrated that the higher frequency 

data becomes insufficient for fitting at higher temperatures.
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Figure S5 Temperature dependence of dielectric constant ε at 1000 Hz-1 MHz for r-

NiNb2O6 coated with Ag, Au and Pt electrodes, respectively. The results shows that 

the polaron hopping induced colossal permittivity behavior (i.e. RXH relaxation) 

which starts at ~220 K exists in all the samples with different electrode. However, 

the RXL relaxation, which leads to the continuous rise in the low-frequency ε at T > 

360 K in Ag-coated sample, is weaker in Au- and Pt-coated samples, indicating that 

the RXL is caused by Maxwell-Wagner effect. 
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Figure S6 Frequency dependent dielectric spectra at 0 V and 35 V of applied bias at 

(a) 240 K, where the applied bias has no impact on dielectric properties, and (b) 290 

K, where the dielectric permittivity at above 1000 Hz is unchanged under applied 

bias. The results indicate that the RXH relaxation is not caused by the interfacial 

polarization.   
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Figure S7 (a) The RgQg-RiQi circuit model used for fitting the dielectric spectra of r-

NiNb2O6, where the R and Q represent the resistance and constant phase element, 

respectively; g and i represent the grain and interface, respectively. (b) The fitted 

results at selected temperatures. Note that when describing the interfacial 

polarization with the RgQg-RiQi model, the basic criteria of Rg << Ri and Cg << Ci should 

be fulfilled. However, the fitted results reveal the relationship of Rg < Ri and Cg > Ci in 

r-NiNb2O6 (Table S1), indicating that the interfacial polarization is not suitable for 

explaining the RXH relaxation. 

Table S1 Parameters of the circuit elements for the fitting in Figure S6. The equivalent 

capacitance of Q element is derived via , where A and n are the parameters 
𝐶𝑄= (𝐴 ∗ 𝑅)

1
𝑛 𝑅

defining the impedance of Q element  and R is its parallel resistance.𝑍𝑄= 1 𝐴(𝑗𝜔)𝑛

T (K) Rg(106Ω) AQg(10-11) nQg CQg (10-11F) Ri (106Ω) AQi (10-11) nQi CQi  (10-11F)

230 12.7 4.83 0.985 4.32 190 1.70 1 1.70

240 9.13 4.21 0.983 3.68 98.3 1.86 1 1.86

250 7.23 3.27 0.979 2.73 38.4 2.01 1 2.01

260 5.05 3.01 0.983 2.60 22.7 2.40 1 2.40
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Figure S8 Temperature dependent EPR spectra for r-NiNb2O6. The black lines are 

experimental data. Each of the EPR lines (R1 and R2), and the red lines are fitted 

curves  


