Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2020

Supporting Information for

Tunable valley splitting in VTe₂/Ga₂S₃ antiferromagnetic/ferroelectric heterostructures

Xikui Ma, Xiaofei Shao, Yingcai Fan, Jian Liu*, Xukun Feng, Lei Sun, Mingwen

Zhao*

School of Physics & State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, Shandong, China

*Corresponding authors: <u>liujian2019phd@gmail.com</u> (J. Liu); <u>zmw@sdu.edu.cn</u> (M. Zhao)

Fig. S1 (a) and (b) The top view and side view of VTe_2 monolayer, respectively. The blue and azure balls represent the V and Te atoms, respectively.

Fig. S2 The heterostructure of antiferrovalley bilayer VTe_2 and Ga_2S_3 monolayer of label I (a) II (b) in main text.

Fig. S3 (a) The band structure of pristine Ga_2S_3 monolayer. (b) and (c) The band structures of heterostructure VTe_2/Ga_2S_3 with opposite direction of ferroelectric polarization. The circles represent the VTe_2 component and the red and blue represent the spin up and spin down. The insets in (a) and (b) are schematic of our system with opposite ferroelectric polarization.

Table SI The parameters (in eV) of the $k \cdot p$ model of the VTe₂/Ga₂S₃ heterostructures obtained by fitting the DFT band structures. n is the layer numbers of the ferroelectric substrate. The parameters of the upper and lower layers of the VTe₂ bilayer are presented, respectively.

Δ	<i>t</i> ₁₂		λ_c		λ_{v}	M _c		M _v
0.361	0.361 0.313		-0.010		0.043	0.546		0.710
n	3		<i>t_{cc}</i>		t_{vv}		U	
	upper	lower	upper	lower	upper	lower	upper	lower
1	0.500	0.500	0.170	0.170	0.297	0.297	0.077	-0.036
2	0.450	0.653	0.190	0.170	0.297	0.287	0.117	-0.079
3	0.437	0.656	0.194	0.170	0.297	0.287	0.130	-0.091
4	0.430	0.658	0.194	0.170	0.297	0.287	0.141	-0.105