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1. General Information

All chemical reagents were purchased from commercial channels and used without any
pretreatment. 'H-NMR and 3C-NMR spectra were obtained from a Bruker AVANCE HD 400
(400 MHz) spectrometer at room temperature. High resolution mass spectra (HRMS) were
measured on a Thermo Fisher Q Exactive mass spectrometer. UV-vis absorption and
photoluminescence spectra in solution state were recorded on an Ocean Optics QE Pro
spectrometer. The SHIMADZU UV-2700 spectrophotometer was used to characterized the
UV-vis absorption spectra of thin films. The photoluminescence spectra and fluorescence
lifetimes of thin films as well as all the fluorescence quantum yields were determined on an
Edinburgh FLS980 spectrometer, among which the last item was completed with the help of a
calibrated integrating sphere system. TGA analyses were performed on a NETZSCH STA 409
PC simultaneous thermal analyzer and DSC curves were measured using a METTLER
TOLEDO DSC 3 instrument under the nitrogen atmosphere at a heating rate of 10 °C-min-!.
CV data were collected from an Autolab PGSTAT 302N electrochemical workstation in a
solution of tetra-n-butylammonium hexafluorophosphate (Buy;NPF¢) (0.1 M) in acetonitrile. A
three electrodes system including a Ag/Ag" reference electrode, a platinum wire counter
electrode and a glass carbon working electrode were used for the CV analyzation. The
ferrocene/ferrocenium couple (Fc/Fc*) was used as the internal standard, whose oxidation
potential is —4.8 V with respect to vacuum level while was determined to be —0.069 V under
the preceding conditions. Therefore, the HOMO energy level can be obtained from the equation
HOMO = — e[E + 0.069 + 4.8] eV, among which the symbol "e" denotes electron charge
quantity. The morphology analyzations of emission layers were carried out by a Keysight 5500

atomic force microscopy (AFM).



2. Material Synthesis and Characterization
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Scheme 1. Synthetic routes of TriPE-PA, TriPE-a-NA, TriPE-B-NA.

Synthesis of 9-phenyl-10-(1,2,2-triphenylvinyl)anthracene (TriPE-PA)

)
)

Tetrakis(triphenylphosphine)palladium (116 mg, 0.10 mmol) was added to a mixture of

bromotriphenylethylene (1.46 g, 4.36 mmol), (10-phenylanthracen-9-yl)boronic acid (1.00 g,

3.35 mmol) and K,CO; (1.86 g, 13.46 mmol) in 40 mL 1,2-dimethoxyethane and 4 mL water

under the nitrogen atmosphere, and the mixture was refluxed at 80 °C for 20 h. After cooling

to room temperature, the reaction mixture was poured into water and then extracted with DCM.

The combined organic layers were washed with water and dried over with anhydrous MgSO,.

After filtration and evaporation, the crude product was purified by silica gel column



chromatography (eluent: PE/DCM = 9/1, v/v) to afford TriPE-PA as a yellow solid (yield =
1.09 g, 64%). '"H-NMR (400 MHz, DMSO-dy): 4 (ppm) 8.50 (d, J = 8.8 Hz, 2H), 7.64 — 7.51
(m, 5H), 7.47 (d, J = 8.7 Hz, 2H), 7.36 (dd, ] = 14.4, 8.1 Hz, 3H), 7.32 — 7.20 (m, 6H), 7.10 —
6.98 (m, 5H), 6.95 — 6.88 (m, 2H), 6.82 (d, J = 7.0 Hz, 3H). 3C-NMR (151 MHz, CDCl;) 3
(ppm): 144.71, 143.30, 143.14, 142.72, 139.08, 137.39, 137.24, 136.45, 131.47, 131.37,
131.27, 130.15, 129.92, 129.82, 128.97, 128.23, 128.19, 127.99, 127.72, 127.32, 127.22,
127.05, 126.89, 126.70, 126.50, 126.45, 125.46, 124.75. HRMS (m/z): [M+H]+ calculated for
CaoHpg, 509.2264; found, 509.2263.

Synthesis of (P&M)-9-(naphthalen-1-yl)-10-(1,2,2-triphenylvinyl)anthracene (TriPE-a-
NA)

TriPE-a-NA was Synthesized according to the similar procedure as for TriPE-PA but with (10-
(naphthalen-1-yl)anthracen-9-yl)boronic acid (1.00 g, 2.87 mmol) instead of (10-
phenylanthracen-9-yl)boronic  acid as well as the  bromotriphenylethylene,
tetrakis(triphenylphosphine)palladium and K,CO; were decreased to 1.25 g (3.73 mmol), 99.6
mg (0.086 mmol) and 1.59g (11.49 mmol), respectively, yielding TriPE-a-NA as a light yellow
solid (yield = 0.96 g, a 1:1 mixture of stereoisomers, 60%). 'H-NMR (400 MHz, CDCls):
(ppm) 8.48 (dd, J=15.8, 8.8 Hz, 2H), 8.06 — 7.93 (m, 2H), 7.66 (dt,J=12.9, 7.5 Hz, 1H), 7.58
(d, J=6.8 Hz, 0.5H), 7.49 — 7.33 (m, 5.5H), 7.33 — 7.22 (m, 6H), 7.22 — 7.03 (m, 7.5H), 6.93
(d, J = 7.1 Hz, 1H), 6.89 — 6.71 (m, 4H), 6.57 (d, J = 8.5 Hz, 0.5H). 3C-NMR (151 MHz,
CDCL) & (ppm): 144.86, 144.81, 143.46, 143.32, 143.11, 142.86, 142.79, 142.47, 137.88,
137.79, 136.81, 136.76, 136.70, 136.48, 135.11, 134.79, 133.64, 133.59, 133.50, 131.38,
131.31, 130.66, 130.65, 130.18, 130.13, 129.91, 129.32, 129.01, 128.97, 128.75, 128.14,
128.08, 128.07, 128.01, 127.98, 127.96, 127.89, 127.82, 127.26, 127.09, 127.06, 127.00,
126.92, 126.83, 126.79, 126.72, 126.65, 126.63, 126.55, 126.53, 126.39, 126.31, 126.24,
126.03, 125.94, 125.82, 125.57, 125.45, 125.40, 125.00, 124.95. HRMS (m/z): [M+H]+
calculated for C44Hzo, 559.2420; found, 559.2418.

Synthesis of (P&M)-9-(naphthalen-2-yl)-10-(1,2,2-triphenylvinyl)anthracene (TriPE-B-
NA)



TriPE-B-NA was Synthesized according to the similar procedure as for TriPE-a-PA but with
(10-(naphthalen-2-yl)anthracen-9-yl)boronic acid (1.00 g, 2.87 mmol) instead of (10-
(naphthalen-1-yl)anthracen-9-yl)boronic acid, yielding TriPE-B-NA as a yellow solid (yield =
1.31 g, a 1:1 mixture of stereoisomers, 82%). 'H-NMR (400 MHz, DMSO-d): 8 (ppm) 8.57 —
8.49 (m, 2H), 8.11 (dd, J = 19.2, 8.1 Hz, 2H), 8.04 — 7.96 (m, 1.5H), 7.89 (s, 0.5H), 7.57 (ddt,
J=39.2,15.8,7.7 Hz, 6.5H), 7.42 (d, ] = 8.5 Hz, 0.5H), 7.32 (dd, J = 13.7, 5.6 Hz, 7TH), 7.05
(s, SH), 6.95 (s, 2H), 6.86 (d, J = 6.2 Hz, 3H). 3C-NMR (151 MHz, CDC]l;) & (ppm): 144.75,
143.33, 143.16, 143.14, 142.73, 142.72, 137.58, 137.56, 137.02, 137.01, 136.62, 136.58,
136.43, 136.41, 133.33, 133.31, 132.67, 131.38, 130.25, 130.16, 130.09, 129.85, 129.83,
129.77, 129.61, 129.01, 128.06, 128.00, 127.84, 127.78, 127.73, 127.70, 127.28, 127.27,
127.15, 127.08, 126.91, 126.77, 126.77, 126.57, 126.55, 126.47, 126.36, 126.13, 125.51,
124.86. HRMS (m/z): [M+H]+ calculated for C44H30, 559.2420; found, 559.2421.



3. NMR and HRMS Spectra
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Fig. S1. 'TH-NMR spectrum of TriPE-PA in DMSO-d.

XEB #1 RT: 0.00 AV: 1 NL: 1.45E8
T: FTMS + p APCI corona Full ms [150.0000-1000.0000]

509.22632

101

Relative Abundance

479.48187

207.10127

255.11638 36935114 431.17905

400

200 300 500

559.24139
‘ 604.29919

600
m/z

Fig. S2. High resolution mass spectrum of TriPE-PA.
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Fig. S3. 13C-NMR spectrum of TriPE-PA in CDCl;.
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Fig. S5. High resolution mass spectrum of TriPE-a-NA.
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Fig. S6. 3C-NMR spectrum of TriPE-a-NA in CDCl;.
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Fig. S7. '"H-NMR spectrum of TriPE-B-NA in DMSO-d.
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4. Theoretical Calculation

All theoretical calculations were carried out by using Gaussian 09 (Revision E.01) program!.
Both optimization calculations of ground states and energy calculations of excited state were
performed based on single structures without consideration of solvation. No special keywords
were used. Table S1 to S4 summarized the primary results of calculations, followed by the

figures (Table S5 and S6) obtained from optimization and drawn by GaussView 5.0.

Table S1. Theoretical calculation results of all configurations

Molecule Structure  HOMO/LUMO® (eV)  E,’(eV) S;¢(eV,nm)  f¢ Assignment ©
TriPE-PA —5.249/-1.921 3328  2.930,4232 0.1899 H—L (95.70%)
(P)-TriPE-a-NA —5.268/—1.940 3328 2.923,424.1 0.1951 H—L (95.68%)
(M)-TriPE-a-NA —5.269/—1.940 3329 29254239 02081 H—-L (95.59%)
(P)-TriPE-B-NA —5.259/-1.930 3329 29244240 0.2192 H—L (95.61%)
(M)-TriPE-B-NA —5.254/-1.937 3316 29144255 0.2347 H—-L (95.84%)

“ Molecule structures including different types of configurations. » HOMOs and LUMOs were carried out from energy
calculations of optimized ground state structures by using DFT with B3LYP/6-311g(d)//B3LYP/6-31g(d) level. E,~LUMO-
HOMO. © First excitation energies (S;), oscillator strengths (f) and dominant assignments of molecular orbitals with their
electronic transition associated weights (inside the brackets) were carried out from energy calculation of excited state by using
TD-DFT with B3LYP/6-311g(d) level.

Table S2. Total Energy of optimized structures and transitional structures

Total Energy * (Hartree)
Optimized Transition State (TS)
Compound
P Type® M Type® Alkenyl (T)¢ Aryl (A)¢
TriPE-PA —1541.43479 —1541.37734 —1541.40231
TriPE-a-NA —1695.10626 —1695.10652 —1695.04883 —1695.04729
TriPE-B-NA -1695.10772 —1695.10769 —1695.05020 —1695.07564

“ Total energies were calculated at BABLYP/6-311g(d) level based on the optimized structures. ® Different types of optimized
configurations in new compounds. © The transitional structures after rotations of triphenylethylene (T) group or aromatic (A)

groups.



Table S3. Energy differences between different configurations or states

Difference (kcal/mol)
Compound AEga AEpp» AEqyb AEpe AE gype
TriPE-PA - 36.04883 20.37946
TriPE-a-NA 0.15877 36.19691 36.03815 37.16356 37.00479
TriPE-B-NA 0.01762 36.07248 36.09010 20.11101 20.12863

AE, =

“ Energy differences between P and M type configurations, P- Ml. b Rotation barriers of aromatic groups,

AEpp = TSp-P AEpy = TS:-M . The

Rotation barriers of triphenylethylene group, AExp= TSy - P, AEam= TSy -M,

meanings of letters in these formulae can be found in Table S2.

Table S4. Energy calculation results of excited state for all crystal structures

Molecule Structure S;“(eV,nm) 1 Assignment ¢
TriPE-PA(C)” 2.967,417.9 0.1944 H—L (95.96%)

(P)-TriPE-a-NA(C)? 2.975,416.7 0.1801 H—L (94.99%)

(P)-TriPE-B-NA(C)” 2.977,416.5 0.1938 H—L (95.37%)

“ Carried out from energy calculation of excited state by using TD-DFT with b3lyp/6-311g(d,p) level. b Crystal structures.

TriPE-PA TriPE-a-NA TriPE-B-NA

L Y

Fig. S10. Transitional structures after rotations of triphenylethylene groups (a) or aromatic

groups (b). All transitional structures were collected by using Berny geometry optimization

algorithm at B3LYP/6-31g(d) level.



5. Single Crystal X-ray Crystallography

Single crystal X-ray diffraction intensity data were collected at 200 K on a Bruker APEX 1II

CCD diffractometer with the CuKa X-ray source.

All solving processes of structures were carried out on the Olex2 program.? The structures of
TriPE-PA and (P)-TriPE-B-NA were solved with the olex2.solve structure solution program
using Charge Flipping, while the structure of (P)-TriPE-a-NA was solved with the ShelXT
structure solution program using Intrinsic Phasing.? The structure of TriPE-PA was further
refined with the olex2.refine refinement package using Gauss-Newton minimisation, and the
other two were refined with the ShelXL refinement package using Least Squares
minimization.*

Fig. S10 shows the disordered structures of TriPE-B-NA crystal. After compared with the
theoretical calculation results, only the relatively reasonable structure was adopted and
identified as P type configuration, which is shown in other figures. More details about

crystallographic structures were summarized in the Table S6.

Fig. S11. The disordered structures of TriPE-B-NA crystal drawn with different kinds of

models, and the hidden part is shown with dashed lines here.



Table S5. The crystallographic details of TriPE-PA, (P)-TriPE-0-NA and (P)-TriPE-B-NA

Name of the structures TriPE-PA (P)-TriPE-a-NA (P)-TriPE-B-NA
CCDC NO. 1903702 1903720 1903718
Empirical formula CaoHg CyqHso Cia86Ho.14Clo 57

Formula weight 508.62 558.68 183.89
Temperature/K 200.01(10) 200.00(10) 200.00(10)
Crystal system monoclinic monoclinic triclinic
Space group P2,/c P2,/c P-1
a/A 17.453(2) 9.2098(3) 9.0342(4)
b/A 9.0614(4) 19.2806(6) 9.2974(4)
c/A 19.864(5) 17.5985(7) 20.4306(13)
a/° 90 90 94.479(4)
pre 116.382(13) 94.424(3) 97.557(5)
v/° 90 90 91.137(4)
Volume/A3 2814.3(8) 3115.65(18) 1695.16(15)
Z 4 4 7
Pealc/cm’ 1.200 1.191 1.261
wmm'! 0.514 0.510 1.952
F(000) 1072.0 1176.0 672.0

Crystal size/mm?

0.19 x0.18 x 0.17

0.18 x0.17 x 0.16

0.19 x0.18 x 0.17

Radiation CuKa (A =1.54184) CuKa (A= 1.54184) CuKa (A= 1.54184)
20 range for data collection/® 8.99 to 132 6.812t0 131.97 8.762 to 131.992
-17<h<20,-10<k<9, -10<h<3,-22<k<17, -10<h<10,-8<k<11,
Index ranges
-23<1<23 -20<1<20 -22<1<24
Reflections collected 10817 9146 8912
. 4887 5362 5831
Independent reflections
[Rint=0.0511, Ryjgma = 0.0494] [Rint = 0.0427, Ryigma = 0.0577] [Rin = 0.0408, Rjgma = 0.0561]
Data/restraints/parameters 4887/0/361 5362/0/397 5831/108/526
Goodness-of-fit on F? 1.036 1.024 1.033

Final R indexes [[>=2c (I)]

R; =0.0733, wR, = 0.1890

R; =0.0645, wR, = 0.1682

R;=0.0731, wR, =0.1927

Final R indexes [all data]

R; =0.0919, wR, = 0.2161

R; =0.0846, wR, = 0.1927

R; =0.0885, wR, = 0.2149

Largest diff. peak/hole / ¢ A-3

0.38/-0.28

0.32/-0.32

0.40/-0.80




6. OLED Fabrications and EQE Curves

The new blue emission materials were further purified by sublimation before the fabrication of
devices. The ITO glasses were cleaned with detergent, further underwent ultrasonic bath of
deionized water, acetone, ethanol, and isopropanol each for 15 min. After it was dried under
the nitrogen gas flow, oxygen plasma was used to treat the surfaces. The ammonium molybdate
solution with concentration of 1.0 wt% was spin-coated onto the top of the ITO substrate at a
speed of 2000 r-min-! for 30 s. Then the ITO glass with covering was heat treated at 80 °C for
2 h to prepare the MoOj thin film, further transferred to the vacuum deposition chamber. 40
nm of NPB layer, 20 nm of emission layer, 40 nm of TPBi layer, 1 nm of LiF layer and 100
nm of Al layer were evaporated onto the top of MoOjs layer in sequence at a pressure of 104
Pa.

For the fabrications of PEDOT:PSS devices, a solution of PEDOT:PSS with concentration of
1.5 wt% was used in place of the ammonium molybdate solution, and the speed of spin-coating
was increased to 5000 rrmin-!. The ITO substrate further dried at 120 °C for 45 min. Other
fabricating procedures were as the same as those of MoOj; devices.

The Photo Research PR-745 SpectraScan spectrophotometer was used to measure the EL
spectra and brightness of devices. Other electrical characteristics were obtained from a Keithley
2400 SourceMeter. All the measurements were carried out at room temperature. The calculated

EQE curves were shown in Figure S12 and S13.
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Fig. S12. EQE versus brightness curves of MoOj; hole-injection layer devices.
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Fig. S13. EQE versus brightness curves of PEDOT:PSS hole-injection layer devices.




7. Additional Data
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Fig. S14. UV-Vis absorption and PL spectra of TriPE-PA, TriPE-a-NA and TriPE-B-NA in

thin films.
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Fig. S15. PL decay curves of TriPE-PA, TriPE-0-NA and TriPE-B-NA in thin films.
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