Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2020

Supporting Information

for

Title: Flexible crystalline β -Ga₂O₃ solar-blind photodetectors

Junyu Lai, Md Nazmul Hassan, Edward Swinnich, Zhao Tang, Sang-Ho Shin, Munho Kim, Peihong Zhang, Jung-Hun Seo*

Creation of β-Ga₂O₃ Nanomembrane

The creation of the β -Ga₂O₃ NMs began with a Sn-doped β -Ga₂O₃ bulk that was grown by molecular beam epitaxy and highly doped with Sn around 1x10¹⁸ cm⁻³. Then β -Ga₂O₃ NMs were then produced by clipping several large segments from the bulk substrate at an angle of 77°, followed by an exfoliation using a well-known taping method. β -Ga₂O₃ segments were easily mechanically exfoliated in [100] direction due to the weak binding energy in this direction. After several times of exfoliation, we transfer β -Ga₂O₃ flakes to SiO₂ substrate to create sub-micron thick β -Ga₂O₃ (β -Ga₂O₃ NMs) by the sonification process in isopropyl alcohol.

N and k value measurement

After permanently bond the β -Ga₂O₃ NMs onto the plastic substrate, we use Filmetric F40 -film thickness & n,k measurement system to measure the n,k value of β -Ga₂O₃ NMs under bending condition. In order to apply uniaxial compressive and tensile strain onto β -Ga₂O₃ NMs. We design convex and concave molds that have different curve radii from 110 to 20 mm which corresponds to up to 0.33% of the tensile strain (for the convex mold) and up to 0.19% of the compressive uniaxial strain (for the concave mold). The bending test was first performed on the concave mold to apply uniaxial compressive strains from the flat condition to 0.06%, 0.09%, and 0.19%, followed by uniaxial tensile strains from the flat condition to 0.09%, 0.13%, 0.19%, and 0.33%, respectively.

Figure S1. A schematic illustration of the fabrication process for the β -Ga₂O₃ NM PDs; (a) a cleaving process from bulk β -Ga₂O₃, (b),(c) an exfoliation process to further thin down β -Ga₂O₃ NM, (d),(e) a micro-transfer printing process to relocate the β -Ga₂O₃ NM onto a plastic substrate, (f) metallization process for ohmic and Schottky contacts.

Figure S2. (a) The refractive index as a function of wavelength on PI substrate under tensile and compressive strain. (b) The extinction coefficient as a function of wavelength on PI substrate under tensile and compressive strain.

Table S1. Optical band gap of β -Ga₂O₃ NMs under compressive and tensile strain extracted
from the refractive index and the extinction coefficient in Figure S1.

Compressive Strain		
Bending Radius	Strain%	Band gap(eV)
flat	0	4.92
110mm	0.06	4.85
75mm	0.09	4.82
35mm	0.187	4.75

Tensile Strain		
Bending Radius	Strain%	Band gap(eV)
flat	0	4.92
75Tmm	0.09	4.85
50Tmm	0.127	4.83
35Tmm	0.187	4.73
20Tmm	0.32	4.7

Figure S3. (a) A microscopic image of the tiled transfer-printed β -Ga₂O₃ NMs on a plastic substrate. An illustration below is to aid to show the tilted β -Ga₂O₃ NMs on a substrate. Angled AFM images of β -Ga₂O₃ NMs on PI substrate (b) before and (c) after bending (50 times). The scale bar is 1um.

Figure S4. A simulated electric field distribution in β -Ga₂O₃ NM under different strain conditions showing an existence of different degrees of strain-

Figure S5. XPS characterization of (a) as-fabricated β -Ga₂O₃ NM and (b) fractured β -Ga₂O₃ NM.