Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2020

Supplementary Information

New Blue Phosphorescent Heteroleptic Ir(III) Complexes with Imidazole- and *N*-Methylimidazole Carboxylates as Ancillary Ligands

Hea Jung Park,^{1*} Eun Ah Chae,¹ Hye Won Seo,¹ Jae-Ho Jang,¹ Won Jae Chung,² Jun Yeob

Lee,^{2*} Do-Hoon Hwang,¹ and Ung Chan Yoon^{1*}

¹Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Republic of Korea

²School of Chemical Engineering, Sungkyunkwan University, Gyeonggi 16419, Republic of

Korea

*To whom correspondence should be addressed.

E-mail: heajungp@pusan.ac.kr, leej17@skku.edu, ucyoon@pusan.ac.kr

Contents

- Section S1. Absorption and Emission spectra of Ir1-Ir4.
- Section S2. Electrochemical properties of *Ir1-Ir4*.
- Section S3. Thermal properties of *Ir3* and *Ir4*.
- Section S4. Device performances of Ir3, Ir4, and FIrpic (reference).
- Section S5. Crystal data of Ir1 and Ir3.
- Section S6. ¹H-, ¹³C-, and ¹⁹F-NMR spectra of *Ir1-Ir4*.

Figure S1. (a) UV-vis absorption (dotted) and emission spectra (line) in solution state and (b) comparison of emission spectra in film (square) *vs*. solution (circle) state of **Ir1**.

Figure S2. (a) UV-vis absorption (dotted) and emission spectra (line) in solution state and (b) comparison of emission spectra in film (square) *vs*. solution (circle) state of **Ir2**.

Figure S3. (a) UV-vis absorption (dotted) and emission spectra (line) in solution state and (b) comparison of emission spectra in film (square) *vs.* solution (circle) state of **Ir3**.

Figure S4. (a) UV-vis absorption (dotted) and emission spectra (line) in solution state and (b) comparison of emission spectra in film (square) *vs*. solution (circle) state of **Ir4**.

Section S2. Electrochemical properties of *Ir1-Ir4*.

Figure S5. Cyclic voltammograms (CV) of iridium (III) complexes, Ir1~Ir4.

Section S3. Thermal properties of *Ir3* and *Ir4*.

Figure S6. TGA curves of Ir(III) complexes, Ir3 and Ir4.

Section S4.Device performances of Ir3, Ir4, and FIrpic (reference).

Figure S7. (a) EQE-L, (b) PE-L, and (c) CE-L curves of Ir3 at different doping ratio.

Figure S8. (a) EQE-L, (b) PE-L, and (c) CE-L curves of Ir4 at different doping ratio.

Figure S9. (a) *EQE-L*, (b) *PE-L*, and (c) *CE-L* curves of **FIrpic** as a reference device at different doping ratio.

Figure S10. Electroluminescence (EL) spectra of **FIrpic** at different doping ratio.

Section S5. Crystal data of Ir1.

The CCDC deposit numbers of Ir(III) crystals are as follows. Ir1 (1504882) and Ir3 (2032373).

Table S1. Crystal data and structure refinement of Ir1.

Identification code	Ir1	Ir1		
Empirical formula	C34.86 H25.71 Cl8.57 F	C34.86 H25.71 Cl8.57 F4.57 Ir1.14 N4.57 O2.86		
Formula weight	1164.69	1164.69		
Temperature	173(2) K	173(2) K		
Wavelength	0.71073 Å			
Crystal system	Monoclinic			
Space group	P2(1)/c			
Unit cell dimensions	a = 17.8294(6) Å	<i>α</i> = 90°.		
	b = 18.6005(6) Å	β= 97.526(2)°.		
	c = 22.9797(7) Å	$\gamma = 90^{\circ}$.		
Volume	7555.2(4) Å ³			
Z	7	7		
Density (calculated)	1.792 Mg/m ³	1.792 Mg/m ³		
Absorption coefficient	4.121 mm ⁻¹	4.121 mm ⁻¹		
F(000)	3952	3952		
Crystal size	0.31 x 0.28 x 0.06 mm ³	0.31 x 0.28 x 0.06 mm ³		
Theta range for data collection	1.15 to 27.54°.	1.15 to 27.54°.		
Index ranges	-23<=h<=23, -24<=k<=	-23<=h<=23, -24<=k<=20, -28<=l<=29		
Reflections collected	70108	70108		
Independent reflections	17349 [R(int) = 0.1221]	17349 [R(int) = 0.1221]		
Completeness to theta = 27.54°	99.6 %	99.6 %		
Absorption correction	SADABS	SADABS		
Max. and min. transmission	0.7901 and 0.3568	0.7901 and 0.3568		
Refinement method	Full-matrix least-squares	Full-matrix least-squares on F ²		
Data / restraints / parameters	17349 / 6 / 894	17349 / 6 / 894		
Goodness-of-fit on F ²	1.047	1.047		
Final R indices [I>2sigma(I)]	R1 = 0.0618, $wR2 = 0.1$	R1 = 0.0618, $wR2 = 0.1863$		
R indices (all data)	R1 = 0.0814, $wR2 = 0.1$	R1 = 0.0814, $wR2 = 0.1970$		
Largest diff. peak and hole	3.797 and -4.279 e.Å ⁻³	3.797 and -4.279 e.Å ⁻³		

Table S2. Crystal data and structure refinement of Ir3.

Identification code	Ir3	
Empirical formula	C29 H21 F4 Ir N4 O2	
Formula weight	725.70	
Temperature	293(2) K	
Wavelength	0.71073 Å	
Crystal system	Monoclinic	
Space group	P2 ₁ /c	
Unit cell dimensions	a = 10.365(2) Å	α= 90°.
	b = 10.696(2) Å	β= 98.90(3)°.
	c = 23.837(5) Å	$\gamma = 90^{\circ}$.
Volume	2610.6(9) Å ³	
Z	4	
Density (calculated)	1.846 Mg/m ³	
Absorption coefficient	5.178 mm ⁻¹	
F(000)	1408	
Crystal size	0.300 x 0.300 x 0.300 mm ³	
Theta range for data collection	3.084 to 27.483°.	
Index ranges	-13<=h<=13, -13<=k<=13, -30<=l<=30	
Reflections collected	22582	
Independent reflections	5944 [R(int) = 0.1389]	
Completeness to theta = 25.242°	99.7 %	
Absorption correction	Semi-empirical from equivalents	
Max. and min. transmission	0.211 and 0.048	
Refinement method	Full-matrix least-squares on F ²	
Data / restraints / parameters	5944 / 0 / 364	
Goodness-of-fit on F ²	1.155	
Final R indices [I>2sigma(I)]	R1 = 0.1046, WR2 = 0.2200	
R indices (all data)	R1 = 0.1281, WR2 = 0.2305	
Extinction coefficient	n/a	
Largest diff. peak and hole	4.262 and -5.326 e.Å ⁻³	

 $<^{8.48}_{8.46}$

 $< \frac{8.07}{8.03}$

484620997432882254442114973533328187878867551

 $<^{2.55}_{2.54}$

Figure S11. ¹H-NMR spectra of Ir1.

1.0

0.5

0.0

н

Figure S12. ¹C-NMR spectra of Ir1.

Figure S14. ¹H-NMR spectra of Ir2.

Figure S15. ¹³C-NMR spectra of Ir2.

-110, 62 -110, 64 -110, 66 -110, 67 -111, 02 -111, 03 -111, 05 -111, 05 -112, 39 -112, 43 -112, 43 -112, 53

Higure S17. ¹H-NMR spectra of **Ir3.**

Figure S18. ¹³C-NMR spectra of Ir3.

Figure S19. ¹⁹F-NMR spectra of Ir3.

Figure S21. ¹³C-NMR spectra of Ir4.

Figure S22. ¹⁹F-NMR spectra of Ir4.