## **Electronic Supporting Information**

## Glass-Limited Yb/Er: NaLuF<sub>4</sub> Nanocrystals: Reversible Hexagonal-to-Cubic Phase Transition and Anti-Counterfeiting

Shaoxiong Wang <sup>a, ‡</sup>, Jidong Lin <sup>a, ‡</sup>, Xiaoyan Li <sup>b,\*</sup>, Jiangkun Chen <sup>a, c</sup>, Changbin Yang

<sup>a, c</sup>, Ping Huang <sup>e,\*</sup>, Yao Cheng <sup>e</sup>, Daqin Chen <sup>a, c, d, f, \*</sup>

[a] College of Physics and Energy, Fujian Normal University, Fujian Provincial Key Laboratory of Quantum Manipulation and New Energy Materials, Fuzhou, 350117, China E-Mail: <u>dqchen@fjnu.edu.cn</u>

[b] College of Electronics and Information Science, Fujian Jiangxia University, Fuzhou, 350108, China E-Mail: xyli@fjjxu.edu.cn

[c] Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, 350108, China

[d] Fujian Provincial Collaborative Innovation Center for Advanced High-Field Superconducting Materials and Engineering, Fuzhou, 350117, China

[e] State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China E-Mai: <u>phuang@fjirsm.ac.cn</u>

[f] Fujian Provincial Engineering Technology Research Center of Solar Energy Conversion and Energy Storage, Fuzhou, 350117, China

| Atomic parametersAtom $x/a$ $y/b$ $z/c$ Atom $x/a$ $y/b$ $z/c$ Na0.00000.00000.0000Lu0.00000.00000.0000F0.25000.25000.2500Space-groupabcFm-3m5.47 Å5.47 Å5.47 ÅFm-3m5.47 Å5.47 Å5.47 Å                                                                                                                                                                                                                                                               | S      |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| Atom $x/a$ $y/b$ $z/c$ Na0.00000.00000.0000Lu0.00000.00000.0000F0.25000.25000.2500Space-groupabcFm-3m5.47 Å5.47 Å5.47 ÅFm-3m5.47 Å5.47 Å5.47 Å                                                                                                                                                                                                                                                                                                       | z/c    |
| Na       0.0000       0.0000       0.0000       Na(2)       0.3333       0.6667         Lu       0.0000       0.0000       0.0000       Lu(1)       0.0000       0.0000         F       0.2500       0.2500       0.2500       Lu(2)       0.6667       0.3333         Space-group       a       b       c       F(1)       0.6460       0.12560         Fm-3m       5.47 Å       5.47 Å       5.47 Å       5.47 Å       Space-group       a       b | 0.5000 |
| Lu       0.0000       0.0000       0.0000       Lu(1)       0.0000       0.0000         F       0.2500       0.2500       0.2500       Lu(2)       0.6667       0.3333         Space-group       a       b       c       F(1)       0.6460       0.12560         Fm-3m       5.47 Å       5.47 Å       5.47 Å       5.47 Å       5.47 Å                                                                                                              | 0.6890 |
| F       0.2500       0.2500       0.2500       Lu(2)       0.6667       0.3333         Space-group a       b       c       F(1)       0.6460       0.1256         Fm-3m       5.47 Å       5.47 Å       5.47 Å       5.47 Å       5.47 Å                                                                                                                                                                                                             | 0.0000 |
| Space-group a         b         c         F(1)         0.6460         0.1256           Fm-3m         5.47 Å         5.47 Å         5.47 Å         5.47 Å           Space-group a         b         b         c                                                                                                                                                                                                                                       | 0.5000 |
| Fm-3m         5.47 Å         5.47 Å         5.47 Å         F(2)         0.6970         0.7220           Space-group         a         b                                                                                                                                                                                                                                                                                                              | 0.0000 |
| Space-group a b                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.5000 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                      | с      |
| P-6 5.91 Å 5.91 Å                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3.50 Å |

Table S1 crystallographic data of cubic  $\alpha$ -NaLuF<sub>4</sub> (left) and hexagonal  $\beta$ -NaLuF<sub>4</sub> (right).



**Figure S1** DSC curve of the glass 1 and glass 2 samples recorded at a heating rate of 10 K/min in temperature range of 100~800 °C.



**Figure S2** Binary equilibrium phase diagram of the NaF-LuF<sub>3</sub> system <sup>S1,S2</sup>, in which the red region represents hexagonal NaF-LuF<sub>3</sub> solid-solution phase.

[S1] Thoma, R. E.; Hebert, G. M.; Insley, H.; Weaver, C. F. Phase Equilibria in the System Sodium Fluoride-Yttrium Fluoride. *Inorg. Chem.* 1963, 2, 1005-1012.
[S2] Thoma, R. E.; Insley, H.; Hebert, G. M. The Sodium Fluoride-Lanthanide Trifluoride Symtems. *Inorg. Chem.* 1966, 5, 1222-1229.



**Figure S3** XRD patterns of Eu<sup>3+</sup>-doped precursor glass and NaLuF<sub>4</sub>@glass samples obtained by heating PG at different temperatures (450~800 °C). Bars represent standard diffraction data of cubic  $\alpha$ -NaLuF<sub>4</sub> (JCPDS No. 27-0725) and hexagonal  $\beta$ -NaLuF<sub>4</sub> (JCPDS No. 27-0726).



Figure S4 PL decay curves ( $\lambda_{em}$ =612 nm) of Eu<sup>3+</sup>-doped precursor glass and NaLuF<sub>4</sub>@glass samples obtained by heating PG at different temperatures (450~800 °C).



**Figure S5** (a) PL decay curves ( $\lambda_{em}$ =593 nm) of Eu<sup>3+</sup>-doped precursor glass and NaLuF<sub>4</sub>@glass samples obtained by heating PG at different temperatures (450~800 °C). (b) The evaluated decay lifetime versus heating temperature.



**Figure S6** Energy level diagram of  $Yb^{3+}$  and  $Er^{3+}$  activators, showing possible energy transfer upconversion mechanism in the present Yb/Er: NaLuF<sub>4</sub>@glass.



**Figure S7** UC decay curves of Yb/Er-doped precursor glass and NaLuF<sub>4</sub>@glass samples obtained by heating PG at different temperatures (450~800 °C): (a) monitoring  ${}^{4}S_{3/2}$  543 nm green emitting, (b) monitoring  ${}^{4}F_{9/2}$  669 nm red emitting.



**Figure S8** Quantitative UC emission spectra of Yb/Er-doped NaLuF<sub>4</sub>@glass samples and the corresponding references for UCQY determination: (a)  $\alpha$ -NaLuF<sub>4</sub>, (b) $\beta$ -NaLuF<sub>4</sub>. All the spectra were recorded by a spectrofluorometer equipped with an integrating sphere.



**Figure S9** XRD patterns of Yb/Er (x/1 mol%) doped NaLuF<sub>4</sub>@glass samples obtained by 750 °C / 650 °C cycling heat-treatment: (a) x=50, (b) x=80. Bars represent standard diffraction data of cubic  $\alpha$ -NaLuF<sub>4</sub> (JCPDS No. 27-0725) and hexagonal  $\beta$ -NaLuF<sub>4</sub> (JCPDS No. 27-0726).



**Figure S10** UC emission spectra Yb/Er (x/1 mol%) doped NaLuF<sub>4</sub>@glass samples obtained by 750 °C / 650 °C cycling heat-treatment: (a) x=50, (b) x=80. The laser excitation wavelength is 980 nm.



**Figure S11** UC luminescence photographs of the flower pattern decorated porcelain in solution for 180 days: (a) water solution, (b) oil solution. The incident laser wavelength is 980 nm.