Electronic Supplementary Information for

Stable puckered C_2N_2 nanosheet with giant anisotropic hole carrier mobility: insights from first-principles

Yanli Wang^{1,\,\mathrm{a})} and Yi $\mathsf{Ding}^{2,\,\mathrm{b})}$

¹⁾Department of Physics, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, People's Republic of China

²⁾Department of Physics, Hangzhou Normal University, Hangzhou, Zhejiang 311121, People's Republic of China

Table S1: the hole mobility information of $bp-C_2N_2$ nanosheet from the FHI-aims calculation.

^{a)}wangyanli-04@tsinghua.org.cn

^{b)}dingyi2001@tsinghua.org.cn

TABLE I. Calculated hole mobility data by the FHI-aims code for the bp- C_2N_2 nanosheet. C, m, E and μ are the elastic constant, effective mass, deformation potential constant and carrier mobility, respectively. The data in brackets are calculated by the HSE functional, which is also done with the FHI-aims code.

	C	m	E	$\mu \ (10^3 \rm{cm}^2 V^{-1} \rm{s}^{-1})$	
	(N/m)	(m_0)	(eV)	DPT formula (1)	DPT $formula(2)$
hole (x)	454	0.40 (0.41)	-0.018 (0.051)	22131 (5765)	1.52(2.30)
hole (y)	681	$18.64 \ (6.53)$	-5.84 (-6.14)	$0.008\ (0.036)$	$0.016\ (0.070)$