## Two-dimensional monoelemental germanene nanosheets: facile preparation and optoelectronic applications

Chao Li,<sup>†</sup><sup>a</sup> Jianlong Kang,<sup>†</sup><sup>a</sup> Jianlei Xie, <sup>†</sup><sup>a</sup> Yingwei Wang,<sup>\*</sup> <sup>b</sup> Li Zhou,<sup>b</sup> Haiguo Hu,<sup>a</sup> Xinzhe Li, <sup>a</sup> Jun He, <sup>b</sup> Bing Wang<sup>\*</sup> <sup>a</sup>, Han Zhang <sup>a</sup>

<sup>a</sup>Institute of Microscale Optoelectronics, Collaborative Innovation Centre for Optoelectronic Science & Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen Key Laboratory of Micro-Nano Photonic Information Technology, Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen University, Shenzhen 518060, P.R. China, E-mail: wangbing@szu.edu.cn

<sup>b</sup>Hunan Key Laboratory for Super-microstructure and Ultrafast Process, School of Physics and Electronics, Central South University, 932 South Lushan Road, Changsha, Hunan 410083, People's Republic of China. E-mail: <u>wyw1988@csu.edu.cn</u>

<sup>†</sup>Those author contributed equally to this work.

Table S1. The light powder density ( $P_{\lambda}$ ) of the incident light with various irradiation wavelengths. The gradually increased  $P_{\lambda}$  were labelled with **I**, **II**, **III**, **IV**, and **VI** levels, respectively.

| $P_{\lambda}$ (mW/cm <sup>2</sup> ) | I level | II level | III level | IV level | VI level |
|-------------------------------------|---------|----------|-----------|----------|----------|
| Simulated light (SL)                | 26.2    | 53.0     | 83.1      | 118      | 122      |
| 350 nm                              | 0.61    | 1.52     | 2.52      | 3.26     | 3.41     |
| 365 nm                              | 0.76    | 1.66     | 2.55      | 3.57     | 3.69     |
| 380 nm                              | 0.32    | 1.02     | 1.91      | 2.68     | 2.77     |
| 400 nm                              | 0.64    | 2.04     | 3.57      | 5.22     | 5.35     |
| 475 nm                              | 1.91    | 4.33     | 7.01      | 10.1     | 10.6     |
| 550 nm                              | 2.04    | 3.95     | 5.98      | 8.28     | 8.40     |
| 650 nm                              | 2.04    | 4.08     | 6.02      | 8.54     | 8.92     |

| Wavelength<br>(nm) | Light intensity<br>(P <sub>λ</sub> , mW·cm <sup>-2</sup> ) | Responsivity<br>(R <sub>ph</sub> , μA·W <sup>-1</sup> ) | Detectivity<br>(D*, Jones) |
|--------------------|------------------------------------------------------------|---------------------------------------------------------|----------------------------|
|                    | 26.2                                                       | 7.81                                                    | 5.20E+09                   |
|                    | 53.0                                                       | 4.20                                                    | 2.87E+09                   |
| SL                 | 83.1                                                       | 3.45                                                    | 2.32E+09                   |
|                    | 118                                                        | 3.00                                                    | 2.01E+09                   |
|                    | 122                                                        | 3.06                                                    | 2.04E+09                   |
| 350                | 0.61                                                       | 81.97                                                   | 5.50E+10                   |
| 365                | 0.76                                                       | 131.58                                                  | 7.66E+10                   |
| 380                | 0.32                                                       | 340.91                                                  | 1.82E+11                   |
| 400                | 0.64                                                       | 28.41                                                   | 1.78E+10                   |
| 475                | 1.91                                                       | 10.50                                                   | 6.45E+09                   |
| 550                | 2.04                                                       | 9.21                                                    | 6.13E+09                   |
| 650                | 2.04                                                       | 8.91                                                    | 6.14E+09                   |

Table S2. Typical parameters of 2D GeNS-based photodetector at 0.6 V applied bias potential and 0.5 M KOH electrolyte.



Fig. S1 Contrast profiles corresponding to cyan zones in the inset of Fig. 1b.



Fig. S2 Linear sweep voltammetry curves of 2D GeNS-based photodetectors in 0.5M KOH.



Fig. S3 The impedance spectroscopic plots of 2D GeNS-based photodetectors in different KOH electrolyte concentrations (0.1 M, 0.5 M and 1 M).