Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2020

Supporting Information

Discovery of a Ce³⁺-Activated Red Nitride Phosphor for High-Brightness Solid-State Lighting

Yonghui Xia,^a Shuxing Li*^a, Takashi Takeda,^b Naoto Hirosaki,^b and Rong-Jun Xie*^a

^a.College of Materials, Xiamen University, Simingnan-Road 422, Xiamen 361005, P. R. China. E-mail: <u>rjxie@xmu.edu.cn</u>; <u>lishuxing@xmu.edu.cn</u>

^b. Sialon Group, National Institute for Materials Science (NIMS), Tsukuba, Ibaraki 305-0035, Japan.

Figure S1. Rietveld refinement of observed HP-CaSiN₂ XRD pattern on the basis of AP-CaSiN₂ structure.

Figure S2. Excitation and emission spectra of none-doped HP-CaSiN₂.

Figure S3. XRD patterns for HP-Ca_(1-x)SiN₂: xCe^{3+} (x = 0-5.0%).

Figure S4. (a) The excitation (λ_{em} = 610 nm), (b) emission spectra (λ_{ex} = 450 nm) and emission intensity of HP-Ca_(1-x)SiN₂:xCe³⁺.

Figure S5. Temperature-dependent normalized integrated PL intensities of HP- $Ca_{0.98}SiN_2:0.02Ce^{3+}$.

Figure S6. Temperature-dependent quantum efficiency of HP-Ca_{0.98}SiN₂:0.02Ce³⁺.

Figure S7. Temperature-dependent decay curves of HP-Ca $_{0.98}$ SiN₂:0.02Ce³⁺ monitored at 610 nm, excited at 450 nm.

Figure S8. Luminescence spectra of the fabricated white LED driven by current increasing from 100 to 1000 mA.

Table S1. The space group, band gap, average bond length (R_{av}) and distortion index (D) of

Nitride	Space group	Band gap (PBE) ^{a)}	$R_{av}^{b)}$	distortion index (D) ^{b)}
SrSi ₆ N ₈	Imm2	3.21 ¹	3.028	0.048
BaSi ₆ N ₈	lmm2	3.25 ¹	3.062	0.040
$SrSi_7N_{10}$	Рс	4.28 ¹	3.268	0.082
BaSi ₇ N ₁₀	Рс	4.11 ¹	3.247	0.043
$Ca_2Si_5N_8$	Сс	3.65 ¹	2.638	0.082
$Sr_2Si_5N_8$	Pmn2 ₁	3.20 ¹	2.866	0.068
$Ba_2Si_5N_8$	Pmn2 ₁	2.88 ¹	2.917	0.046
$LaSi_3N_5$	P2 ₁ 2 ₁ 2 ₁	3.19 ¹	2.700	0.049
$La_3Si_6N_{11}$	P4bm	2.97 ¹	2.647	0.001
ZnSiN ₂	Pna2 ₁	4.83 ²	2.109	0.010
$MgSiN_2$	Pna2 ₁	3.97 ¹	2.090	0.011
Cubic-CaSiN ₂	E2m	4.50 ³	2 /01	0.070
(Ca ₁₆ Si ₁₇ N ₃₄)	FJIII	(optical band gap)	2.401	0.079
AP-CaSiN ₂				
(ambient-	Pbca	3.44	2.506	0.046
pressure phase)				
HP-CaSiN ₂				
(high-pressure	Pbca	3.44	2.570	0.086
phase)				
SrSiN ₂	P21/c	2.97 ¹	2.843	0.069
$BaSiN_2$	Стса	2.92 ¹	2.986	0.061
$La_5Si_3N_9$	Стса	1.97 ¹	2.553	0.074
$Ca_5Si_2N_6$	C2/c	2.46 ¹	2.447	0.023
$Ba_5Si_2N_6$	P212121	1.40 ¹	2.977	0.073
Ca ₄ SiN ₄	P21/c	1.45 ¹	2.454	0.034
		4		

potential nitridosilicate candidates.

	14 /	4.90 ⁴	2 0 6 2	0.040
Srivig ₃ SiN ₄	14 ₁ /a	(optical band gap)	2.863	0.049
$CaMg_3SiN_4$	14 ₁ /a	2.60 ⁵	2.733	0.052
BaMg3SiN4	Р	4.00 ⁴ (optical band gap)	2.953	0.015
$Ca_3Li_4Si_2N_6$	C2/m	2.29 ¹	2.580	0.045
$Sr_3Li_4Si_2N_6$	C2/m	unknown	2.706	0.022
SrAlSi ₄ N ₇	Pna2 ₁	3.58 ¹	2.713	0.054
$Ba_2AlSi_5N_9$	P1	unknown	2.955	0.030
SrYSi ₄ N ₇	P6₃mc	2.74 ¹	3.012	0.015
CaLi ₂ Si ₂ N ₄	Ра	3.46 ⁶	2.499	0.004
$SrLi_2Si_2N_4$	Ра	3.44 ¹	2.689	0.001
CaAlSiN ₃	Cmc21	3.36 ⁷	2.470	0.053
$Ca_5Al_2Si_2N_8$	Pbcn	2.79 ¹	2.526	0.033
Sr ₈ Mg ₇ Si ₉ N ₂₂	C2/m	2.90 ⁸	2.764	0.035
$Ca_3LiSi_2N_5$	C2/c	2.44 ¹	2.511	0.039
$La_{17}Al_4Si_9N_{33}$	F3m	1.88 ¹	2.578	0.011
$Li_5La_5Si_4N_{12}$	Pb2	unknown	2.580	0.032
$Sr_4Li_2Si_2N_6$	Ра	2.20 ¹	2.671	0.029
$Ca_2Ba_3Si_2N_6$	C2/c	1.55 ¹	2.513	0.040
$MgBa_4Si_2N_6$	Fddd	1.59 ¹	2.845	0.047
$Li_2Ca_2Mg_2Si_2N_6$	C2/m	4.26 ⁹ (optical band gap)	2.588	0.041
Li ₂ Ca ₃ MgSi ₂ N ₆	C2/m	unknown	2.513	0.038
Li ₄ Ca ₂ MgSi ₂ N ₆	C2/m	unknown	2.482	0.015
$BaLi_2Al_2Si_2N_6$	P4/ncc	4.60 ¹⁰ (optical band gap)	3.017	0.027
KLaSi(CN ₂) ₄	P21221	unknown	2.609	0.018
RbLaSi(CN ₂) ₄	1	unknown	2.607	0.019

^{a)} (The optical band gap is multiplied by 67% to convert to an approximate PBE band gap.); ^{b)} (The values of R_{av} and D are collected from ICSD; For multi-lattice structures, the smallest R_{av} and corresponding D values are selected.)

Table S2. Sele	ected bond	lengths of H	IP-CaSiN₂:Ce ³⁺ .
----------------	------------	--------------	------------------------------

Atom	Distance (Å)	Atom	Distance (Å)
(Ca1/Ce1) – N1	2.371(34)	(Ca2/Ce2) – N1	2.546(26)
(Ca1/Ce1) – N2	2.497(30)	(Ca2/Ce2) – N1	2.971(28)
(Ca1/Ce1) – N2	2.928(29)	(Ca2/Ce2) – N2	2.824(31)
(Ca1/Ce1) – N3	2.559(31)	(Ca2/Ce2) – N3	2.507(30)
(Ca1/Ce1) – N3	2.068(30)	(Ca2/Ce2) – N4	2.598(29)
(Ca1/Ce1) – N4	2.927(27)	(Ca2/Ce2) – N4	2.601(30)
		(Ca2/Ce2) – N4	2.965(29)

Current (mA)	CIE color coordinates	CRI	CCT (K)
100	(0.4012, 0.3527)	89.8	3243
200	(0.4003, 0.3515)	90.1	3254
300	(0.3993, 0.3504)	90.4	3268
400	(0.3975 <i>,</i> 0.3486)	90.7	3294
500	(0.3960, 0.3468)	90.9	3312
600	(0.3952 <i>,</i> 0.3459)	91.1	3322
700	(0.3937, 0.3438)	91.2	3341
800	(0.3927, 0.3423)	91.4	3351
900	(0.3919, 0.3413)	91.5	3360
1000	(0.3915, 0.3408)	91.5	3365

Table S3. CIE color coordinates, CRI and CCT of the fabricated white LED.

Notes and references

- 1 Y. Zhuo, A. M. Tehrani, A. O. Oliynyk, A. C. Duke and J. Brgoch, Nat. Commun., 2018, 9, 4377.
- 2 N. L. Adamski, Z. Zhu, D. Wickramaratne and C. G. Van de Walle, *Phys. Rev. B*, 2019, **100**, 155206.
- 3 W. A. Groen, M. J. Kraan and G. Dewith, 1994, **29**, 3161-3166.
- 4 S. Schmiechen, P. Strobel, C. Hecht, T. Reith, M. Siegert, P. J. Schmidt, P. Huppertz, D. Wiechert and W. Schnick, *Chem. Mater.*, 2015, **27**, 1780-1785.
- 5 S. Azam, S. A. Khan and S. Goumri-Said, *Semicond Sci Technol*, 2017, **32**, 055017.
- 6 Q. Wu and J. Zhou, *Dyes Pigment.*, 2019, **161**, 324-330.
- 7 Z. Wang, B. Shen, F. Dong, S. Wang and W.-S. Su, *Phys. Chem. Chem. Phys.*, 2015, **17**, 15065-15070.
- 8 C. Li, H.-W. Zheng, H.-W. Wei, J. Su, F.-H. Liao, Z.-Y. Zhang, L. Xu, Z.-P. Yang, X.-M. Wang and H. Jiao, *Chem. Commun.*, 2018, **54**, 11598-11601.
- 9 X. Yang, Y. Zhang, X. Zhang, J. Chen, H. Huang, D. Wang, X. Chai, G. Xie, M. S. Molokeev, H. Zhang, Y. Liu and B. Lei, *J. Am. Ceram. Soc.*, 2020, **103**, 1773-1781.
- 10 P. Strobel, S. Schmiechen, M. Siegert, A. Tucks, P. J. Schmidt and W. Schnick, *Chem. Mater.*, 2015, **27**, 6109-6115.