Enhancing the performance of all vapor-deposited electron-conductor-free CsPbBr₃ photodetectors via interface engineering for their applications in image sensing

Xingyue Liu^a, Xianhua Tan^{a,b*}, Zhiyong Liu^a, Xuning Zhang^a, Tielin Shi^a and Guanglan Liao^{a,c*}

^a State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan 430074, China

^b School of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China

^c Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen 518057, China

* Address correspondence to (X. Tan) <u>tanxianhua@hust.edu.cn</u>; (G. Liao) <u>guanglan.liao@hust.edu.cn</u>.

Fig. S1. The water contact angle measurement of the as-evaporated CuPc film.

Fig. S2. The large-scope SEM image of the CsPbBr₃ films.

Fig. S3. The Mott-Schottky plots of the CuPc-free and 8 nm CuPc-based PDs.

Fig. S4. (a) The EQE and (b) corresponding responsivity of the CuPc-free and 8 nm CuPc-based PDs.

Fig. S5. XPS survey of the evaporated MoO₃ film.

Fig. S6. The Mott-Schottky plots of the CuPc-free and 8 nm CuPc-based PDs.

Fig. S7. (a) The EQE and (b) corresponding responsivity of the MoO₃-modified PD.

Fig. S8. PCE variations of the MoO₃-modified PD under persistent thermal attacks at 60 °C.