Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2020

Supporting Information for

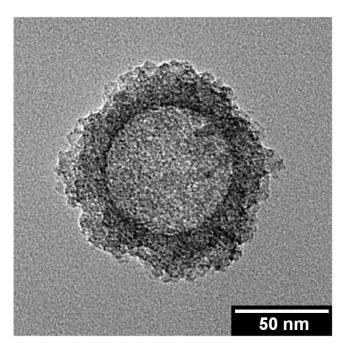
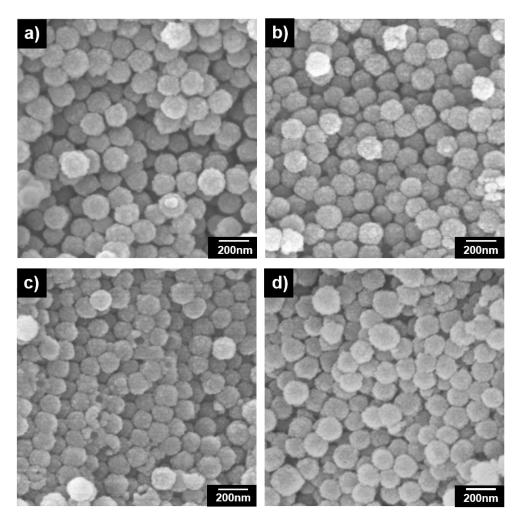
Ecoresorbable smart fluids with controlled electroresponsive properties by various metal doping

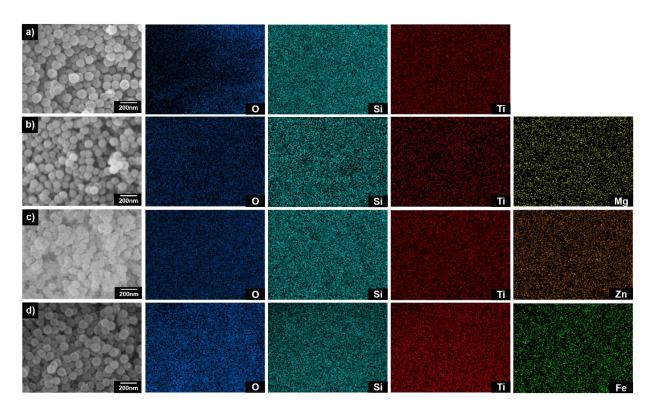
Hyukjoon Gwon, Sohee Park and Seungae Lee*

*Department of Chemical Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu,

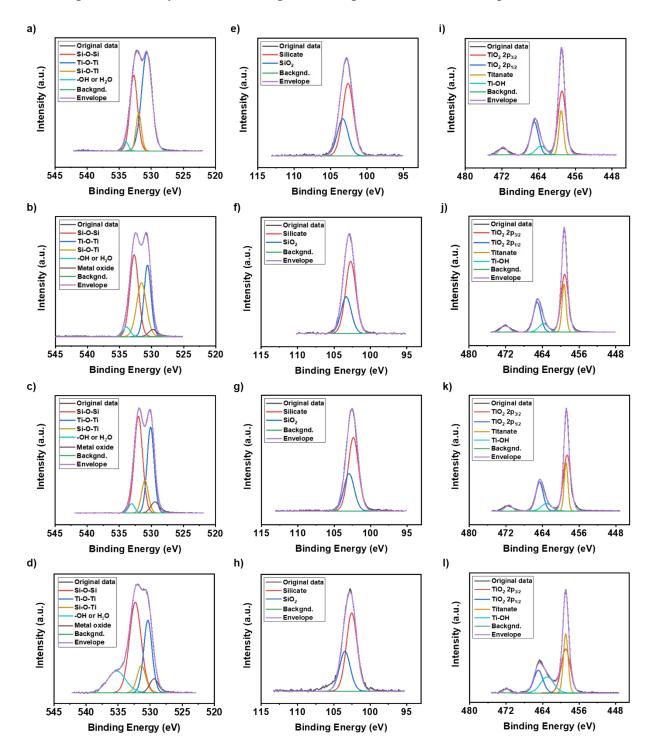
Seoul 05029, Republic of Korea. Tel.: 82-2-2049-6109; E-mail: salee@konkuk.ac.kr

1. High-magnification TEM image of the Mg-doped HNP.

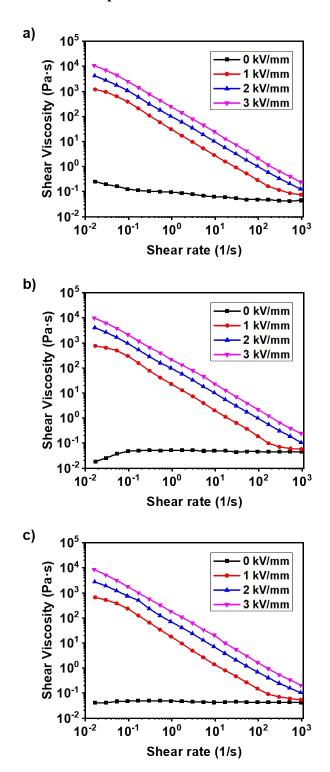




Fig. S1 High-magnification TEM image of the Mg-doped HNPs.

2. SEM micrographs of various metal-doped HNPs.


Fig. S2 Field emission scanning electron microscope (FE-SEM) images of a) HNPs, b) Mg-doped HNPs, c) Zn-doped HNPs, and d) Fe-doped HNPs.

3. EDS mapping of various metal-doped HNPs.


Fig. S3 EDS mapping data of a) HNPs, b) Mg-doped HNPs, c) Zn-doped HNPs, and d) Fe-doped HNPs.

4. XPS spectrum analysis of O 1s, Si 2p, and Ti 2p of various metal-doped HNPs.

Fig. S4 XPS O 1s spectra of a) HNP, b) Mg-HNP, c) Zn-HNP, d) Fe-HNP, respectively. XPS Si 2p spectra of e) HNP, f) Mg-HNP, g) Zn-HNP, h) Fe-HNP, respectively. XPS Ti 2p spectra of i) HNP, j) Mg-HNP, k) Zn-HNP, l) Fe-HNP, respectively.

5. Shear viscosity of various metal-doped HNPs as a function of shear rate.

Fig. S5 Shear viscosity of a) Mg, b) Zn, and c) Fe-doped HNP-based ER fluids as a function of shear rate.

6. Relative permittivity of soybean oil .

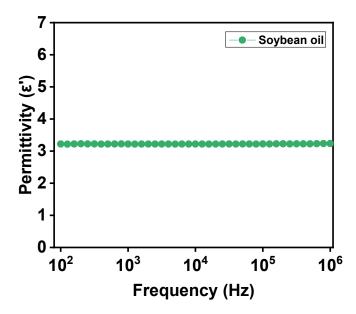
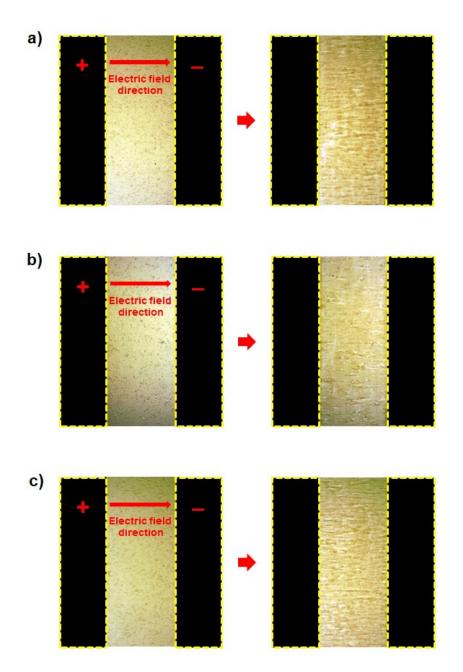



Fig. S6 The permittivity as a function of electric field frequency for soybean oil.

7. Optical microscope images of the structural transition of HNP-, Mg-doped HNP- and Zn-doped HNP-based ER fluids.

Fig. S7 Optical microscope images of a) HNP-, b) Mg-doped HNP-, and c) Zn-doped HNP-based ER fluids under the external electric field of 0.5 kV mm⁻¹. The gap between two electrodes was fixed as 1.0 mm.

8. Physical parameters of HNPs and metal-doped HNPs-based ER fluids.

Table S1. Physical parameters and sedimentation velocity of HNPs and metal-doped HNPs in soybean oil.

Samples	Particle diameter ^a (nm)	Particle density ^b (g cm ⁻³)	Fluid density ^c (g cm ⁻³)	Fluid viscosity ^c (Pa s)	Sedimentation velocity ^d (m s ⁻¹)
HNPs	115	1.52	0.92	0.054	8.288×10 ⁻¹³
Mg-doped HNPs	115	1.61	0.92	0.054	9.571×10 ⁻¹³
Zn-doped HNPs	115	1.81	0.92	0.054	1.226×10 ⁻¹²
Fe-doped HNPs	115	1.85	0.92	0.054	1.289×10 ⁻¹²

^a The average diameter of the HNPs and the metal-doped HNPs were determined by TEM analysis.

^b The density of the HNPs and the metal-doped HNPs were measured by pycnometry at 24 °C.

^c Soybean oil was used as the dispersing medium. Density and viscosity values of soybean oil were taken from previously published work.^{1,2}

 $[^]d$ The sedimentation velocity was calculated using Stokes' equation.

9. References

- H. Noureddini, B. C. Teoh and L. Davis Clements, J. Am. Oil Chem. Soc., 1992, 69, 1184–1188.
- H. Noureddini, B. C. Teoh and L. Davis Clements, J. Am. Oil Chem. Soc., 1992, 69, 1189–1191.