SUPPORTING INFORMARION

High Brightness Circularly Polarized Electroluminescence from Conjugated Polymer F8BT Induced by Chiral Binaphthyl-pyrene

Xueyan Zhang, ^a Zhaoran Xu, ^a Yu Zhang, ^a Yiwu Quan, ^{*a} Yixiang Cheng, ^{*b}

a. Key Laboratory of High Performance Polymer Materials & Technology of Ministry of Education, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China. Email: quanyiwu@nju.edu.cn

b. Key Lab of Mesoscopic Chemistry of MOE and Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China. E-mail: yxcheng@nju.edu.cn.

Contents

1.	Thermal Properties of Compounds <i>R</i> -3	2
3.	Electrochemical Measurements	3
4.	CP-OLED Performances and Electroluminescence Spectra of <i>R-/S-3</i>	3
5.	Photophysical Spectra of F8BT + <i>R</i> -/ <i>S</i> -3	4
6.	Electroluminescence Spectra of Devices based on blends F8BT + R-/S-3	5
7.	NMR Spectra vs MS Spectra of Compounds	6

1. Thermal Properties of Compounds R-3

Figure S1. TGA curves of *R*-3; Inset curve: DSC curves of *R*-3.

2. Chiroptical Properties of Compounds *R-/S-3*

Figure S2 CD spectra of *R*-/*S*-3 in CH₂Cl₂ (1.0×10^{-5} M) and spin-coated films.

Figure S3 CPL spectra of R-/S-3 in CH₂Cl₂ (1.0 × 10⁻⁵ M) and spin-coated films.

3. Electrochemical Measurements

Figure S4 CV curves of *R*-3 in CH₂Cl₂ solution

Table S1 Electrochemical characteristic properties of compounds R-3

Compounds	alabs, onset	${}^{\mathrm{a}}E_{\mathrm{g}}$	$E_{\rm ox,onset}$	^a HOMO/LUMO	${}^{\mathrm{b}}\lambda_{\mathrm{abs, onset}}$	^b HOMO/LUMO	${}^{\mathrm{b}}E_{\mathrm{g}}$
	(nm)	(eV)	(V)	(eV)	(nm)	(eV)	(eV)
<i>R</i> -3	380	3.26	1.013	-5.24 /-1.98	390	-5.23 /-1.62	3.61

a: Measured in CH₂Cl₂ at room temperature in the presence of *R***-3** (0.5 mmol/L), ferrocene (0.5 mmol/L) as an internal standard, and *n*-Bu₄NPF₆ (0.1 M) as an electrolyte; $E_g = 1240/\lambda_{onset}$, calculated from the absorption edge; $E_{HOMO} = -(E_{ox, onset} - E(Fc/Fc^+) + 4.8)$ eV, $E(Fc/Fc^+) = 0.587$ V vs Ag/AgCl; $E_{LUMO} = E_{HOMO} + E_g$; b: Values in parentheses are obtained at the B3LYP-D3(BJ)/6-31G** level.

4. CP-OLED Performances and Electroluminescence Spectra of *R-/S-3*

Figure S5 CP-OLED performance of devices based on *R-/S-3*.

Figure S6 Electroluminescence spectra of devices based on *R-/S-3*.

5. Photophysical Spectra of F8BT + *R*-/*S*-3

Figure S7 UV-vis absorption in spin-coated films of blends system F8BT + wt% R-/S-3.

Table S2 Fluorescent quantum yield (Φ_F) of as-cast/annealed F8BT and blends F8BT+*R*-3 films

Sample	Dopant (wt%)	$arPsi_F(\%)$
F8BT/as-cast	0	12.6
F8BT + <i>R</i>-3 /as-cast	5	27.8

F8BT + <i>R</i>-3 /as-cast	10	28.5
F8BT + R-3/as-cast	15	32.3
F8BT + <i>R</i>-3 /as-cast	25	28.7
F8BT + <i>R</i>-3 /as-cast	50	27.6
F8BT/annealed	0	19.7
F8BT + R-3/ annealed	5	36.6
F8BT + R-3/ annealed	10	43.5
F8BT + $R-3/$ annealed	15	52.7
F8BT + $R-3/$ annealed	25	46.3
F8BT + $R-3/$ annealed	50	47.3

Figure S8 Cross-polarized optical microscope images $(100\times)$ of as-cast (c) and annealed F8BT + 10% *R*-3 films (d).

6. Electroluminescence Spectra of Devices based on blends F8BT + R-/S-3

Figure S9 Electroluminescence spectra of devices based on blends F8BT+ wt% *R-/S-*3; (a) 5% *R-*3; (b) 10% *R-*3; (c) 15% *R-*3; (d) 25% *R-*3; (e) 10% *S-*3.

7. NMR Spectra vs MS Spectrum of Compounds

¹H NMR spectrum of compound *R*-3

¹³C NMR spectrum of compound *R*-3

¹H NMR spectrum of compound *S*-3