Electronic Supplementary Information

Multifunctional properties and multi-energy storage in the [(CH₃)₃S][FeCl₄] plastic crystal

Jorge Salgado-Beceiro^a, Juan Manuel Bermúdez-García^a, Antonio Luis Llamas-Saiz^b, Socorro Castro-García^a, María Antonia Señarís-Rodríguez^a, Francisco Rivadulla^c, Manuel Sánchez-Andújar^a

^a University of A Coruna, QuiMolMat Group, Dpt. Chemistry, Faculty of Science and Advanced Scientific Research Center (CICA), Zapateira, 15071 A Coruña, Spain.

^b RIAIDT X-ray Unit, Universidade of Santiago de Compostela, 15782 Santiago de Compostela, Spain.

^c Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química-Física, Universidade de Santiago de Compostela. 17582 Santiago de Compostela (Spain)

Figure S1. Energy dispersive X-ray spectrum of the $[(CH_3)_3S][FeCl_4]$ compound.

Figure S2. Room temperature experimental PXRD patterns for the obtained $[(CH_3)_3S][FeCl_4]$ compound together with the simulated patterns based on its single crystal structure at room temperature.

Figure S3. **Top**: Several DSC curves (solid line first cycle and dash line second cycle) for $[(CH_3)_3S][FeCl_4]$ compound. **Bottom:** Room temperature PXRD patterns for the obtained $[(CH_3)_3S][FeCl_4]$ compound after synthesis (blue line) and after cooling from $T > T_t$ (red line).

Figure S4. TGA and DTA decomposition curves for the [(CH₃)₃S][FeCl₄] compound.

Figure S5. Detail of the crystal structure of the $[(CH_3)_3S][FeCl_4]$ compound showing the three different Fe-Cl distances present in the $[FeCl_4]^-$ anions at 100K.

Figure S6. Detail of the crystal structure of the $[(CH_3)_3S][FeCl_4]$ compound at 100K showing the interactions between one Cl-atom of $[FeCl_4]^-$ with four H-atoms of methyl groups of three $[(CH_3)_3S]^+$ cations.

Figure S7. **Top:** Thermal evolution of the cell parameters of the LT-polymorph of $[(CH_3)_3S][FeCl_4]$. **Bottom:** Thermal evolution of the volume of the LT-polymorph of $[(CH_3)_3S][FeCl_4]$.

Figure S8. Detail of the crystal structure of $[(CH_3)_3S][FeCl_4]$ showing the disorder of the $[(CH_3)_3S]^+$ cations at different temperatures between 100, 150, 200, 250, 300 and 310K (from left top to right bottom). The ellipsoid shows a probability of 30%. Hydrogen atoms shown as spheres of fixed radius. Refined atomic population parameters are used for transparency level (%), see Table S3 for numerical values.

Figure S9. Detail of the crystal structure of $[FeCl_4]^-$ tetrahedral at different temperatures between 100, 150, 200, 250, 300 and 310 K (from left top to right bottom). The ellipsoid shows a probability of 30%.

Figure S10. Precession images generated from single-crystal X-ray diffraction data of the HT-polymorph obtained along the main axis.

Empirical formula	C₂H₀S FeCl₄						
Wavelength (Å)	0.71073						
Crystal size (mm ³)	0.170 x 0.100 x 0.056						
Formula weight		274.81					
F(000)				548			
							Proposed SG
Temperature (K)	100	150	200	250	300	310	320
Crystal system	Orthorhombic	Orthorhombic	Orthorhombic	Orthorhombic	Orthorhombic	Orthorhombic	Cubic?
Space group	Pnma	Pnma	Pnma	Pnma	Pnma	Pnma	Pm-3m?
Unit cell dimensions (Å)	a = 12.1950(7)	a = 12.2667(8)	a = 12.4012(4)	a = 12.5644(5)	a = 12.707(4)	a = 12.7698(9)	a = 6.6626(13)
	b = 7.9217(4)	b = 7.9320(5)	b = 7.9136(2)	b = 7.8927(3)	b = 7.900(2)	b = 7.9044(5)	
	c = 11.3013(6)	c = 11.3580(7)	c = 11.4326(4)	c = 11.5059(4)	c = 11.551(4)	c = 11.5756(8)	
Volume (Å ³)	1091.71(10)	1105.13(12)	1121.97(6)	1141.01(7)	1159.6(6)	1168.41(14)	295.75(17)
Z	4	4	4	4	4	4	1
Density calculated (Mg/m ³)	1.672	1.652	1.627	1.600	1.574	1.562	-
Absorption coefficient (mm ⁻¹)	2.482	2.452	2.415	2.375	2.337	2.319	2.290
Tmin, Tmax	0.72, 0.87	0.65, 0.88	0.74, 0.88	0.74, 0.88	0.74, 0.88	0.72, 0.88	0.61, 0.82
Theta range for data collection (°)	2.46 - 36.37	2.44 - 33.16	2.42 - 33.13	2.40 - 29.57	2.38 - 27.13	2.38 - 26.72	3.06 - 15.15
	-20<=h<=20	-17<=h<=18	-17<=h<=19	-16<=h<=17	-15<=h<=16	-15<=h<=16	-4<=h<=4
Index ranges	-13<=k<=13	-12<=k<=12	-12<=k<=12	-10<=k<=10	-10<=k<=10	-10<=k<=9	-4<=k<=4
	-18<=l<=18	-17<=l<=17	-17<=l<=17	-15<=l<=15	-14<=l<=14	-14<=l<=14	-4<= <=4
Measured reflections	65618	16182	17487	13914	11340	11256	2763
Independent reflections	2802 [R(int)=0.0488]	2241 [R(int)=0.0417]	2260 [R(int)=0.0369]	1702 [R(int)=0.0390]	1372 [R(int)=0.0365]	1324 [R(int)=0.0332]	24 [R(int)=0.0588]
Indep. Reflections [I>2(I)]	2420	1726	1715	1194	889	844	24
Completeness (%)	99.8	99.9	99.8	99.8	99.9	99.9	100
Refinement method	Full-matrix least-squares on F ²						
Data / restraints / parameters	2802 / 0 / 63	2241 / 94 / 83	2260 / 94 / 83	1702 / 94 / 83	1372 / 94 / 83	1324 / 219 / 121	-
Goodness-of-fit on F ²	1.102	1.057	1.031	1.022	1.030	1.050	-
Final R indices [I>2sigma(I)]	R1 = 0.0288	R1 = 0.0345	R1 = 0.0343	R1 = 0.0401	R1 = 0.0484	R1 = 0.0378	_
	wR2 = 0.0603	wR2 = 0.0601	wR2 = 0.0719	wR2 = 0.0938	wR2 = 0.1254	wR2 = 0.0933	
R indices (all data)	R1 = 0.0377	R1 = 0.0542	R1 = 0.0514	R1 = 0.0602	R1 = 0.0764	R1 = 0.0621	-
	wR2 = 0.0652	wR2 = 0.0680	wR2 = 0.0827	wR2 = 0.1090	wR2 = 0.1493	wR2 = 0.1113	
Largest diff. peak and hole (e·Å-3)	0.628 and -0.657	0.652 and -0.469	0.439 and -0.410	0.560 and -0.374	0.522 and -0.262	0.230 and -0.215	-

Table S1. Crystal data and structure refinement for $[(CH_3)_3S]][FeCl_4]$.

T=100K	D-H	НА	DA	<(DHA)	
	0.97(2) 0.92(2)	2.79(2) 2.79(2)	3.6488(15) 3.6251(15)	147.0(17) 150.9(17)	C1-H1BCl2_i C1-H1CCl2_ii
T=150K					
	0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.965(19)	2.84 2.75 3.00 2.72 2.67 2.92 2.97(3)	3.676(6) 3.632(6) 3.73(6) 3.46(5) 3.55(6) 3.63(5) 3.64(6)	144.0 150.0 132.4 132.2 149.1 129.5 128(3)	C1^a-H1B^aCl2_i C1^a-H1C^aCl2_iii C1B^b-H1D^bCl2_iii C1B^b-H1D^bCl3 C1B^b-H1E^bCl2_i C1B^b-H1F^bCl1_iv C2B^b-H2E^bCl1_iii
Т=200К			(-)		
	0.98 0.98 0.98 0.98 0.98	2.87 2.78 2.83 2.88 2.87	3.675(7) 3.674(7) 3.59(2) 3.547(16) 3.73(2)	140.5 152.5 135.0 126.2 147.9	C1^a-H1B^aCl2_i C1^a-H1C^aCl2_iii C1B^b-H1D^bCl2_iii C1B^b-H1D^bCl3 C1B^b-H1E^bCl2_i
T=250K					
	0.97 0.97 0.97 0.97 0.97 0.97	2.88 2.95 2.81 2.84 2.93 2.95	3.630(15) 3.697(14) 3.704(14) 3.63(3) 3.50(3) 3.75(3)	134.4 134.8 154.0 139.5 118.3 141.1	C1^a-H1B^aCl1_iv C1^a-H1B^aCl2_i C1^a-H1C^aCl2_iii C1B^b-H1D^bCl2_iii C1B^b-H1D^bCl3 C1B^b-H1E^bCl2_i
T=300K					
	0.96 0.96 0.96 0.96 0.94(2)	2.75 2.80 2.77 2.84 2.98(3)	3.576(15) 3.702(18) 3.44(2) 3.70(3) 3.65(3)	144.6 157.4 127.8 149.5 129.6(17)	C1^a-H1B^aCl1_iv C1^a-H1C^aCl2_iii C1B^b-H1D^bCl3 C1B^b-H1E^bCl2_i C2B^b-H2E^bCl1_iii
T=310K					
	0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96	2.81 2.84 2.69 2.79 2.53 2.81 2.71 2.92 2.81	3.585(11) 3.707(14) 3.43(2) 3.69(3) 3.35(5) 3.72(6) 3.48(7) 3.70(6) 3.44(4)	138.0 150.0 134.9 155.7 143.4 158.3 137.3 138.6 124.6	C1^a-H1B^aCl1_iv C1^a-H1C^aCl2_iii C1B^b-H1D^bCl3 C1B^b-H1E^bCl2_i C1C^c-H1I^cCl1_iii C2C^c-H1J^cCl1_v C2C^c-H1L^cCl1_iii C3C^c-H1M^cCl1 C3C^c-H1O^cCl3_i

Table S2. Interactions between Cl-atoms of $[FeCl_4]^-$ with t H-atoms of methyl group of $[(CH_3)_3S]^+$ cations at different temperatures (distances in Å, $^{\circ}$). Atoms labelled as ^a, ^b or ^c according to different disordered positions for the cation.

Symmetry operations: (i) -x+1, -y+1, -z+1(ii) x-1/2, -y+3/2, -z+1/2(iii) x-1/2, y, -z+1/2(iv) -x+1/2, -y+1, z+1/2(v) x-1/2, -y+1/2, -z+1/2

Table S3.	[(CH₃)₃S]¹	cation	disorder	vs	temperature.
-----------	---	------	-------	--------	----------	----	--------------

Temperature (K)	No disordered positions	Refined population parameters (%)
100	1*	100
150	2	92.3(2) / 7.7(2)
200	2	81.1(2) / 18.9(2)
250	2	71.4(3) / 28.6(3)
300	2	65.2(5) / 34.8(5)
310	4	60.0(3) / 25.7(3) / 7.11(14) / 7.11(14)**

(*) There are some low electron density residual peaks in the Fourier difference map that allow to construct and refine (with many constrains) a disordered model for $[(CH_3)_3S]^+$ in 2 orientations like that found at higher temperatures. The final refined population parameters are 99.07(13) / 0.93(13) %. It is a much more complicated model with no significant improvement in data fitting, therefore, the no disordered model is considered in the final refinement reported at 100K.

(**) Last two population values are identical because they correspond to disordered positions related by a mirror symmetry plane.