Tunable Magnetic Anisotropy in 2D Magnets via Molecular Adsorption

Cheng Tang^{1,2},Lei Zhang^{1,2} and Aijun Du^{1,2,*}

¹Centre for Materials Science, Queensland University of Technology, Gardens Point Campus, Brisbane, QLD 4000, Australia

²School of Chemistry and Physics, Queensland University of Technology, Gardens Point Campus, Brisbane, QLD 4000, Australia

<u>E-mail: aijun.du@qut.edu.au</u>

Figure S1. 2×2 supercell of CrI₃ monolayers under (a) FM, (b) AFM_1 and (c) AFM_2 configurations. The total energies of each magnetic state are displayed in the figure.

Figure S2. The average magnetic moment as a function of temperature in CrI_3 monolayer obtained by the Monte Carlo simulation. The Curie temperature of CrI_3 is estimated to be around 46 K.

Figure S3. The energy difference between FM and AFM states of charge carrier doped monolayer CrI₃ supercell.

Figure S4. Different adsorption configurations for (a) TCNQ and (b) TTF molecules. (c, d) Corresponding adsorption energies for each configuration. The most stable one is the Cr-top configuration for both TCNQ- and TTF-CrI₃.

	FM	AFM_1	AFM_2	E_{ads}
CrI ₃	-117.56832	-117.30706	-117.32848	-
TCNQ-2×2 CrI_3	-269.73011	-269.45045	-269.47686	-0.70
TTF-2×2 CrI ₃	-201.27020	-201.01587	-201.03414	-0.93
TCNQ-1×2 CrI ₃	-211.12401	-211.00834	-	-0.89
TTF-1×2 CrI ₃	-142.48854	-142.34428	-	-0.95
TCNQ-1×3 Crl ₃	-240.52857	-240.37934	-	-0.87
TTF-1×3 Crl ₃	-171.83927	-171.65479	-	-0.92
TCNQ-2×3 Crl_3	-328.49014	-328.16058	-	-0.71
$TTF-2\times 3 CrI_3$	-259.99528	-259.64512	-	-0.93

Table S1. The total energies (eV) of molecules adsorbed CrI_3 monolayers under different magnetic configurations. AFM_1 represents the Néel AFM configuration. The adsorption energy E_{ads} (eV) of each case under their magnetic ground states.

Figure S₅. The orbital-resolved MAE of the same Cr atom in CrI₃ monolayer with and without organic molecular adsorption.

Figure S6. The estimated Curie temperature $T_{\rm C}$ (K) of TCNQ- and TTF-CrI₃ monolayers through Monte Carlo simulations.

Figure S7. The geometries of (a-d) TCNQ and (e-h) TTF adsorbed CrI₃ monolayer under different concentrations.

Figure S8. Spin-polarized band structures for (a) TCNQ-CrI₃, (b) CrI_3 and (c) TTF-CrI₃ nanosheets. The geometry of 2×2 supercell CrI_3 substrate is used. (d-h) Band decomposed charge density for marked impurity states.

Figure S9. Orbital-resolved density of states of FM (a) TCNQ-CrI₃, (b) CrI_3 and (c) TTF-CrI₃. The grey area represents the total density of states.

Figure S10. The optical absorption of organic molecules adsorbed CrI₃ monolayers.

Organic molecules adsorption on other 2D magnets

After realizing the modulation effect of organic molecules on CrI₃ monolayers, we expanded it to other representative 2D magnets, such as CrI₃ bilayer (BL-CrI₃) and CrBr₃ monolayer. As shown in Fig. SII, the supercells of 2×2 are used to reduce the interactions between neighboring molecules. The AB stack CrI₃ bilayer is adopted, due to its lowest total energy among all studied configurations¹. All the calculations are performed with the DFT+U method. The magnetic ground state of these calculated magnets is FM by comparing the total energies of different magnetic configurations, and it remains FM after organic molecular adsorption. Notably, the calculated adsorption energies of these magnetic substrates are all negative (Fig. S12), indicating the stability of the molecular adsorption. When adsorbing on the 2D magnets, the TCNQ (TTF) molecule introduces the hole (electron) doping into the magnetic substrates through the interfacial electrostatic effects. Thus, the magnetic anisotropy of these carrier doped 2D magnets can be readily regulated in a large range, as in the case of the CrI₃ monolayer. It is worthy to note that the magnetocrystalline easy axis changes from out-of-plane to in-plane in the CrBr₃ monolayer

by TTF adsorption. Therefore, the organic molecular adsorption can be regarded as a universal method to modulate the magnetic anisotropy in 2D magnets.

Figure S11. The top and side views of geometries of TCNQ-BL-CrI₃, TTF-BL-CrI₃, TCNQ-CrBr₃ and TTF-CrBr₃.

Figure S12. Adsorption energies E_{ad} (eV), charge difference ΔQ (*e*) and magnetic anisotropic energy MAE (meV) of molecular adsorption on (a-c) CrI₃ bilayer and (d-f) CrBr₃ monolayer, respectively.

References

1. N. Sivadas, S. Okamoto, X. Xu, C. J. Fennie and D. Xiao, *Nano Lett.*, 2018, **18**, 7658-7664.