Supporting Information

Ultrasensitive luminescent nanothermometer in first biological window based on phonon-assisted thermal enhancing and thermal quenching

Mochen Jia^a, Zhen Sun^a, Hanyu Xu^a, Xiaoyang Jin^a, Ziqian Lv^a , Tianqi Sheng^b and

Zuoling Fu*a

^aCoherent Light and Atomic and Molecular Spectroscopy Laboratory, Key Laboratory of Physics and Technology for Advanced Batteries, College of Physics, Jilin University, Changchun 130012, China

^bZhong Sheng (Shen Zhen) Medical Equipment Science and Technology Co., Ltd., Shenzhen, Guangdong, China

*zlfu@jlu.edu.cn

Experimental section

Chemicals. Ln(NO₃)₃ stock solutions were prepared by dissolving Yb₂O₃ (99.99%, Aladdin), Tm₂O₃ (99.99%, Aladdin) and Er₂O₃ (99.99%, Aladdin) into hot nitric acid in stoichiometric proportions. Na₂MoO₄ (99%), YbCl₃·6H₂O (99.99%), TmCl₃·6H₂O (99.99%) and (NH₄)₂HPO₄ (99%) were purchased from Beijing HWRK Chem Co., LTD.

Sample Preparation. NaYb(MoO₄)₂: xTm³⁺ nanosheets were synthesized by hydrothermal method with further calcination. The stoichiometric amounts of Ln(NO₃)₃ stock solutions were dissolved in the appropriate amount of deionized water. Next, the stoichiometric amounts of Na₂MoO₄ with Ln(NO₃)₃/Na₂MoO₄=1/3 were dissolved in the appropriate amount of deionized water and dropped into the above solution. The pH of the mixed solution was adjusted to 5 with diluent nitric acid and sodium hydroxide to form a white colloidal solution and stirred for 1 h. Then the mixture was transferred into a Teflon-lined stainless steel autoclave, and maintained at 180 °C for 24 h. The precipitates were obtained by centrifugation and washed with deionized water and ethanol. After drying at 60 °C for 10 h, the nanosheets were obtained by calcining the precipitates at 600 °C for 6 h. The synthesis of NaYb(MoO₄)₂: 5%Er³⁺ sample was similar except that Er(NO₃)₃ stock solution was required.

YbPO₄: 1%Tm ³⁺ nanoparticles were synthesized by the coprecipitation method with further calcination. The lanthanide chlorides (YbCl₃·6H₂O and TmCl₃·6H₂O) were stoichiometrically dissolved in appropriate amount of deionized water. Then the stoichiometric amounts of (NH₄)₂HPO₄ dissolved in appropriate amount of deionized water were dropped into the above solution and stirred for 7 h. The precursors were obtained by centrifugation and washed with deionized water and ethanol, and then dried at 70 °C for 10 h. Finally, the dried precursors were calcined in air at 1200 °C for 2 h to yield the final nanoparticles.

Cytotoxicity assay. A standard MTT assay was utilized to assess the cytotoxicity of NaYb(MoO₄)₂: 1%Tm³⁺ sample in Hela cells. The cells were incubated for 24 h with 5% CO₂ at 37 °C to attach them to the wells. Then the sample was introduced into the wells and incubated for another 24 h with a set series of concentrations.

Characterization Techniques. The crystallographic phases of all samples were determine by XRD patterns on a Bruker D8 Focus diffractometer equipped with Cu K α radiation ($\lambda = 0.15405$ nm). The morphologies were studied via a field emission scanning electron microscope (SEM, Philips XL30) and a transmission electron microscope (TEM, JEM-2200FS). The Fourier transform infrared spectra were collected by a Bruker TENSOR 27 FT-IR spectrometer. The luminescence spectra were collected by an Andor SR-500i spectrometer (Andor Technology Co, Belfast, U.K.) equipped with a SR830 DSP lock-in amplifier and a CCD detector under the excitation of a 980 nm diode laser. The temperature evolution emission spectra of samples were obtained with the assistance of a copper-constant thermocouple and temperature control system (TAP-02, orient-KOJI). The absorption spectra were measured with a Shimadzu UV-3101PC scanning spectrophotometer. The quantum yield was measured on a fluorescence spectrometer (FLS1000, Edinburgh) equipped with an integrating sphere under the excitation of 980 nm (5 W/cm²).

Figure S1. The XRD patterns of NaYb(MoO₄)₂: xTm³⁺ samples.

Figure S2. The Fourier transform infrared spectrum of $NaYb(MoO_4)_2$: $1\%Tm^{3+}$ nanosheets.

Figure S3. Double-log intensity-power slopes of ${}^{1}G_{4} \rightarrow {}^{3}F_{4}$ and ${}^{3}F_{2,3} \rightarrow {}^{3}H_{6}$ transitions for NaYb(MoO₄)₂: 1%Tm³⁺ nanosheets.

Figure S4. The XRD pattern of YbPO₄: 1%Tm³⁺ sample, and the schematic crystal structure of tetragonal phase YbPO₄.

Figure S5. The SEM and TEM images of YbPO₄: 1%Tm³⁺ nanoparticles.

Figure S6. Double-log intensity-power slopes of ${}^{1}G_{4} \rightarrow {}^{3}F_{4}$ and ${}^{3}F_{2,3} \rightarrow {}^{3}H_{6}$ transitions for YbPO₄: 1%Tm³⁺ nanoparticles.

Figure S7. The absorption spectra of aqueous suspensions of NaYb(MoO₄)₂: 1%Tm³⁺ and YbPO₄: 1%Tm³⁺ samples.

Figure S8. The temperature evolution emission spectra in the 313–573 K range of NaYb(MoO₄)₂: 1%Tm³⁺ nanosheets.

Figure S9. The normalized integrated intensities with temperature of corresponding transitions for NaYb(MoO₄)₂: 1%Tm³⁺ nanosheets.

Figure S10. The thermally coupled thermometry based on ${}^{3}F_{2,3}$ and ${}^{3}H_{4}$ levels of NaYb(MoO₄)₂: 1%Tm³⁺ nanosheets.

Figure S11. The time-dependent integrated intensities of ${}^{1}G_{4} \rightarrow {}^{3}F_{4}$ and ${}^{3}F_{2,3} \rightarrow {}^{3}H_{6}$ emissions of NaYb(MoO₄)₂: 1%Tm³⁺ nanosheets at 373 K.

Figure S12. The S_r of thermally coupled thermometry based on ${}^{3}F_{2,3}$ and ${}^{3}H_4$ levels of NaYb(MoO₄)₂: 1%Tm³⁺ nanosheets.

Figure S13. The cell viabilities of Hela cells incubated with different concentrations of NaYb(MoO_4)₂: 1%Tm³⁺ sample for 24 h.

Figure S14. The emission spectrum of NaYb(MoO_4)₂: 5%Er³⁺ nanosheets under the 980 nm excitation.

Parameter	Value	r ²
a	-0.4078 ± 0.0380	
b	0.0061 ± 0.0003	0.99994
c	70.48 ± 0.47	

Table S1. The fitting parameters of calibration curve for $NaYb(MoO_4)_2$: $1\%Tm^{3+}$ nanosheets.

Table S2. The fitting parameters of power-dependent *LIR* values at different temperature of NaYb(MoO_4)₂: 1%Tm³⁺ nanothermometers.

Temperature (K)	e	Δn	r ²
333	0.6413±0.0035	-0.6570 ± 0.0083	0.9987
373	1.3367 ± 0.0060	-0.6340 ± 0.0068	0.9991
423	3.3129±0.0278	-0.5190 ± 0.0123	0.9954