Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2021

Isotopic study of Raman active phonon modes in β – Ga₂O₃

Supplementary Material: Isotopic study of Raman active phonon modes in β – Ga₂O₃

B. M. Janzen,¹ P. Mazzolini,^{2, 3} R. Gillen,⁴ A. Falkenstein,⁵ M. Martin,⁵ H. Tornatzky,^{1, 6} J. Maultzsch,⁴ O. Bierwagen,² and M. R. Wagner^{1, a)}

¹⁾Technische Universität Berlin, Institute of Solid State Physics, Hardenbergstraße 36, 10623 Berlin, Germany.

²⁾Paul-Drude-Institut für Festkörperelektronik, Leibniz-Institut im Forschungsverbund Berlin e.V, Hausvogteiplatz 5-7, 10117 Berlin, Germany.

³⁾Department of Mathematical, Physical and Computer Sciences, University of Parma, Viale delle Scienze 7/A, 43124 Parma,

Italy.

⁴⁾Chair of Experimental Physics, Friedrich-Alexander Universität Erlangen-Nürnberg, Staudtstraße 7, 91058 Erlangen, Germany.

⁵⁾Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, 52074 Aachen, Germany. ⁶⁾Universite de Toulouse, INSA-CNRS-UPS, LPCNO, 135 avenue de Rangueil, 31077 Toulouse, France.

^{a)}Electronic mail: markus.wagner@physik.tu-berlin.de

AFM MICROGRAPHS

AFM micrographs evidence a morphology characterized by (i) the presence of deep trenches, almost orthogonal to the [001] in-plane direction, related to island-coalesence growth mechanism (Fig. S1a), [1] and (ii) (110) facets visible as elongated features oriented along the [001] orientation as a result of the metal-rich growth conditions of the layer (Fig. S1b).

FIGURE S1. (a) 5x5 and (b) 1x1 μ m AFM images of the 1.6 μ m thick (010) β -Ga₂O₃ homoepitaxial layer deposited with ¹⁸O isotopes.

TOF-SIMS MEASUREMENTS

Fig. S2 illustrates the ToF-SIMS depth profiles for the isotope fraction of ¹⁸O. The ¹⁸O isotope fraction n^* is calculated by the SIMS intensities:

$$n^* = \frac{I({}^{18}\mathrm{O}^-)}{I({}^{16}\mathrm{O}^-) + I({}^{18}\mathrm{O}^-)}$$
(S1)

In the film, 96.3% ¹⁸O are employed (nominal isotope fraction of the gas: 97.39%). At the interface, the isotope fraction is decreased over a transient region with an extent of 300 nm to 0.3%, which is slightly above the natural isotope abundance of 0.2%.

FIGURE S2. ToF-SIMS analysis of the thin film. ¹⁸O isotope fraction analyzed with 25 keV Ga⁺ analysis beam and 2 kV Cs⁺ sputter beam. The interface (1650 nm) is obtained from the depth of 50% of the film's maximum isotope fraction. The inset shows the same graph with linear scale.

SCHEME OF RAMAN-ACTIVE PHONON MODES

For the monoclinic crystal structure of β -Ga₂O₃ there are 15 Raman-active phonon modes (10 with A_g and 5 with B_g symmetry), the schemes of which are illustrated in Fig. S3. A_g -modes are presented in projection on the b-plane. Arrows indicate the displacements of the corresponding atoms, with the length of the arrows representing each atom's

FIGURE S3. Scheme of Raman-active modes within the primitive unit cell of β -Ga₂O₃. A_g -modes are shown in projection on the *b*-plane. The ($\overline{2}01$) plane (blue) is indicated for the illustration of B_g -modes. Arrows indicate the displacements of basis atoms, with lengths denoting the amplitude of vibration. Different red and grey colours indicate individual O and Ga lattice site atoms.

amplitude of vibration. A_g -modes are seen to oscillate within the b-plane, whereas modes of B_g -symmetry vibrate perpendicular to the same.

REFERENCES

1. P. Mazzolini and O. Bierwagen, "Towards smooth (010) β – Ga₂O₃ films homoepitaxially grown by plasma assisted molecular beam epitaxy: The impact of substrate offcut and metal-to-oxygen flux ratio," J. Phys. D. Appl. Phys. **53**, 354003 (2020).