Electronic Supporting Information

Optoelectronic synaptic transistors based on upconversion nanoparticles

Haixia Lian, ^{‡a} Qiufan Liao, ^{‡b} Baidong Yang,^b Yongbiao Zhai,^b Su-Ting Han^{*b} and Ye Zhou^{*a}

^aInstitute for Advanced Study, Shenzhen University Shenzhen 518060, P. R. China

^bInstitute of Microscale optoelectronics and College of Electronics and Information Engineering, Shenzhen University, Shenzhen 518060, P. R. China

[‡] Haixia Lian and Qiufan Liao contributed equally to this work.

Corresponding E-mails: yezhou@szu.edu.cn (Ye Zhou); sutinghan@szu.edu.cn (Su-Ting Han)

Fig. S1. Statistical particle size distribution of 50 nanoparticles.

Fig. S2. High-angle annular dark-field (HAADF) image and corresponding elemental mapping.

Fig. S3. PL emission spectrum of $NaYF_4$: Yb^{3+}/Er^{3+} @NaYF₄@SiO₂ nanoparticles.

Fig. S4. The transfer curves of the memory device with doping concentration of 0.15 mg mL-1 under different programming voltage or erasing voltage (1 s; $V_{DS} = -5V$). (a) P: -7 V, E: +7 V; (b) P: -8 V, E: +8 V.

Fig. S5. The PSC generated by (a) programming operation (amplitude: -8 V, base voltage: -0.5 V, $V_{DS} = -5$ V) and (b) erasing operation (amplitude: 8 V, base voltage: -0.5 V, $V_{DS} = -5$ V) with diverse duration time from 0.02 to 1.0 s. The PSC generated by (c) programming operation and (d) erasing operation under the identical duration time (0.2 s) with diverse pulse amplitude from \pm 5 V to \pm 9 V.

Fig. S6. The PPF behavior of UCNPs-based synaptic transistor triggered by a pair of presynaptic pulses (8 V, 0.2 s, interval: 0.2 s, base voltage: -0.5 V, $V_{DS} = -5$ V).

Fig. S7. (a) The PPF index under different time interval. (b) The PPD behavior of UCNPs-based synaptic transistor triggered by a pair of presynaptic pulses (-8 V, 0.2 s, interval: 0.2 s, base voltage: -0.5 V, $V_{DS} = -5 \text{ V}$).

Fig. S8. The EPSC achieved by two successive light pulses.

semiconductor layer	tunneling dielectric layer	charge trapping layer	blocking dielectric layer	initial threshold voltage (V)	operating voltage (V)	memory window (V)	I _{on} (A)	I _{off} (A)	I_{on}/I_o ff	P/E cycle	ref
BPE-PTCDI	no	PCBM:N(PTPMA)3	SiO ₂ (100nm)	~4	50	~30	10 ⁻⁶	10 ⁻⁹	~10 ³	200	1
pentacene	PS	graphene quantum dots	SiO ₂ (100nm)	~1	60	~35	10-4	10- 10	~106	100	2
NDI20D-T2	no	PS:[P3HT:PCBM]	PMMA (280nm)	~4	50	~3.5	10-7	10-9	$\sim 10^{2}$	500	3
NDI20D-T2	no	PS:Tips-Pen	PMMA (320nm)	ND	55	~10	10-6	10-8	$\sim 10^{2}$	500	4
pentacene	по	PaMS/HfO ₂	A1 ₂ O ₃ (20nm)	ND	11	1.5	10-5	10- 10	~10 ⁵	2000	5
C60	pV3D3	A1	pEGDMA	~2	15	8	10-6	10- 10	~104	1000	6
pentacene	no	PS/DPP	SiO ₂ (300nm)	~8	100	~30	10-4	10- 10	~10 ⁶	ND	7
TPA-CN-TPE	no	TPA-CN-TPE	SiO ₂ (300nm)	~40	100	42	10 ⁻⁵	10-9	$\sim \! 10^4$	ND	8
P(NDI20D-T2)	PMMA	PS-b-PPP	PMMA (400nm)	~11	60	26.7	10-6	10-8	$\sim 10^{2}$	500	9

Table S1. Summary of Previously Reported Flash Memory Performance.^a

^a ND,			1	no							data.
pentacene	no	UCNPs	Al ₂ O ₃ (30nm)	~2	8	~2.1	10-6	10-9	~10 ³	500	this work
IGZO	A1 ₂ O ₃	ZAO	Al ₂ O ₃ (60nm)	0.1	10	5.74	10 ⁻⁶	10- 10	$\sim 10^{4}$	ND	15
IGZO	A1 ₂ O ₃	IGZO	Al ₂ O ₃ (35nm)	~1	15	3. 16	10^{-5}	10 ⁻ 11	~10 ⁶	ND	14
ITZO	no	SiO _x	SiO ₂ (20nm)	0.15	13	3. 73	10 ⁻⁶	10- 13	$\sim 10^{7}$	ND	13
IGZO	A1 ₂ O ₃	Zn0	Al_2O_3 (35nm)	~1	12	7.1	10 ⁻⁵	10- 11	~106	1000	12
P3HT	no	BCP/MAPbBr ₃	SiO ₂ (100nm)	~8	60	ND	10^{-7}	10 ⁻ 10	$\sim 10^{3}$	ND	11
pentacene	pV3D3	p(BDDA-co-HEA)	pBDDA (19nm)	~2	16	~3.3	10 ⁻⁷	10- 11	~104	1000	10

Supporting Information references

- 1 Y.-C. Chiu, T.-Y. Chen, Y. Chen, T. Satoh, T. Kakuchi, W.-C. Chen, ACS Appl. Mater. Interfaces, 2014, 6, 12780-12788.
- 2 Y. Ji, J. Kim, A. N. Cha, S. A. Lee, M. W. Lee, J. S. Suh, S. Bae, B. J. Moon, S. H. Lee, D. S. Lee, G. Wang, T. W. Kim, *Nanotechnology*, 2016, 27, 145204.
- 3 W. Wang, K. L. Kim, S. M. Cho, J. H. Lee, C. Park, ACS Appl. Mater. Interfaces, 2016, 8, 33863-33873.
- 4 C. Wu, W. Wang, J. Song, Appl. Phys. Lett., 2016, 109, 223301.
- 5 W. C. Xu, H. X. He, X. S. Jing, S. J. Wu, Z. Zhang, J. W. Gao, X. S. Gao, G. F. Zhou, X. B. Lu, J. M. Liu, *Appl. Phys. Lett.*, 2017, **111**,063302.
- 6 S. Lee, H. Seong, S. G. Im, H. Moon, S. Yoo, Nat. Commun. 2017, 8, 725.
- 7 N. Shi, D. Liu, X. Jin, W. Wu, J. Zhang, M. Yi, L. Xie, F. Guo, L. Yang, C. Ou, W. Xue, W. Huang, *Org. Electron.*, 2017, **49**, 218-225.
- 8 S. W. Cheng, T. Han, T. Y. Huang, Y. H. Chang Chien, C. L. Liu, B. Z. Tang, G. S. Liou, ACS Appl. Mater. Interfaces, 2018, **10**, 18281-18288.
- 9 G. Wang, X. Liu, W. Wang, IEEE Electron Device Lett., 2018, 39, 111-114.
- 10 C. Lee, K. Pak, J. Choi, M. J. Kim, B. J. Cho, S. G. Im, Adv. Funct. Mater, 2020, 2004665.
- 11 Y. H. Chang, C. W. Ku, Y. H. Zhang, H. C. Wang, J. Y. Chen, Adv. Funct. Mater, 2020, 30, 2000764.
- 12 D. -D. Liu, W.-J. Liu, J. -X. Pei, L. -Y. Xie, J. Hou, X. Wu, S. -J. Ding, Nanoscale Res. Lett., 2019, 14, 363.
- 13 C. P. T. Nguyen, T. T. Trinh, J. Raja, A. H. T. Le, K. Jang, Y. -J. Lee, J. Yi, Semicond. Sci. Technol., 2015, **30**, 075009.
- 14 W. -P. Zhang, S. -B. Qian, W. -J. Liu, S. -J. Ding, D. W. Zhang, *IEEE Electron Device Lett.*, 2015, **36**, 2466084.
- 15 S. Chen, X. -M. Cui, S. -J. Ding, Q. -Q. Sun, T. Nyberg, S. -L. Zhang, W. Zhang, *IEEE Electron Device Lett.*, 2013, **34**, 2266371.