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Fig. S1  XRD patterns of NaYF4:Yb/Er (20/1 %) microtubes before and after 

annealing. The annealing temperatures are marked in figure. Note that the bottom of 

the panel is standard data for hexagonal NaYF4 (dark gray, JCPDS no. 16-0334) and 

cubic YOF (blue, JCPDS no. 08-3257). The purple stars are the peaks from NaF 

crystals.



Fig. S2  Typical XRD, SEM images and the UC emission spectra of NaYF4: Yb/Er 

(20/1 %) microtubes after annealing at 600 ℃ in N2 atmosphere.



Fig. S3  Typical SEM images of NaYF4:Yb/Er microtubes doped with transition 

elements such as Mn2+ or Cr3+ after annealing at 700 ℃. (a,e) NaYF4:Yb/Mn/Er 

(20/20/1 %); (b,f) NaYF4:Yb/Mn/Er (20/40/1 %); (c,g) NaYF4:Yb/Cr/Er (20/20/1%); 

(d,h) NaYF4:Yb/Cr/Er (20/40/1 %). Scale bar: (a-d) 10 μm; (e-h) 1 μm.



Fig. S4  Typical SEM images of NaYF4:Yb/Er (40/1 %) microtubes (a,b) and 

microrods (c,d) after annealing at 750 ℃. Scale bar: (a) 10 μm, (b,c) 5 μm and (d) 1 

μm.



Fig. S5  XRD patterns of NaYF4:Yb/Er (40/1 %) microtubes (a) and microrods (b) 

before and after annealing at 750 ℃ for 2 hours, respectively. The standard data for 

hexagonal NaYF4 (JCPDS no. 16-0334) and cubic YOF (JCPDS no. 08-3257) are 

marked in the bottoms. The purple stars are the peaks from NaF crystals.



Fig. S6  Emission spectra of NaYF4:Yb/Er microtubes with or without Mn2+ or Cr3+ 

doping. Noted that the insets of (a) and (b) are the integrated luminescence intensities 

ratios of as-prepared samples after annealing to the corresponding maternal 

NaYF4:Yb/Er(20/1 %) and NaYF4:Yb/Er(40/1 %) microtubes, respectively. All the 

samples were excited with a 980 nm laser operating at 200 mW/cm2. Therein, (a) 

NaYF4:Yb/Er(20/1 %), (b) NaYF4:Yb/Er (40/1 %), (c) NaYF4:Yb/Mn/Er (20/20/1 %), 

(d) NaYF4:Yb/Mn/Er (20/40/1 %), (e) NaYF4:Yb/Cr/Er (20/20/1 %) and (f) 

NaYF4:Yb/Cr/Er (20/40/1 %).



Fig. S7  Ln–ln variation curves of green and red UC luminescence intensity upon laser 

power densities for (a) NaYF4:Yb3+/Er3+(20/1 %) and (b) NaYF4:Yb3+/Er3+(20/1 

%)@YOF:Yb3+/Er3+(20/1 %) (600 °C, Air) samples under 980 nm excitation.



Fig. S8  A standard two-photon UC mechanism in our UC systems. Energy transfer 

UC (ETU), from the sensitizer to the activator, is considered as the primary UC 

mechanism.

In this typical two-photon UC process as shown in Fig. S8, the activator ion at the 

ground state (state 1) is first excited to state 2 through an ETU process (ETU1), and 

further excited to state 3 through a second ETU process (ETU2). The UC luminescence 

is generated from the transition 3→1. The time-dependent populations of different 

energy states can be described by the following rate equations:
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Where  is time-dependent excitation power density, Wi represents the rate )(t

constants of the energy transfer processes,  is the lifetime of the excited energy levels, i

and  is absorption cross-section of the sensitizer ions.

Based on rate equations, when the sensitizer’s excited-state lifetime is 5

significantly smaller than , the decay behavior of UCL can be well represented by its 3

natural decay characterized by . With increasing , the induced UCL decay starts 3 5

to gradually deviate from its natural decay. When reaches 10, the UCL decay profile 5
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can approach an exponential decay curve characterized by a time constant of (or 5

2
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). In our present case, the luminescence lifetime is dominated due to , while 35 5
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mainly depends on Wi. Hence, shortening the decay time after annealing suggests 5

the improvement of energy transfer efficiency. The reduced rise time of time evolution 

profile of luminescence supports this conclusion.



Fig. S9  Luminescence photos under 980 nm excitation with 400 mw/cm2 power 

density. Noted that (a,b) NaYF4:Yb/Er (40/1 %) microtubes before and after annealing 

at 600 ℃ as green and red inks, respectively; (c,d) NaYF4:Yb/Er (60/1 %) microtubes 

before and after annealing at 600 ℃ as green and red inks, respectively.



Table 1 Decay times for green and red UC luminescence in NaYF4:Yb/Er(20/1%) 

microtubes under 980 nm excitation.

Sample [μs]nm 546 [μs]
nm


656

Un 456 5 317 5

500 ℃ 110 5 134 5

600 ℃ 160 5 183 5

700 ℃ 278 5 280 5


