Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C.
This journal is © The Royal Society of Chemistry 2020

SUPPORTING INFORMATION

Ladder-Type Bithiophene Imide-Based Organic Semiconductors:
Understanding charge transport mechanisms in Organic Field Effect
Transistors
Alexandra Harbuzaru¥’, Iratxe Arrechea-Marcost, Alberto Scaccabarozzi®, Yingfeng Wangt,
Xugang Guot, Mario Caironi*", J. Teodomiro Lépez Navarrete*, M. Carmen Ruiz Delgado?,

Rocio Ponce Ortiz*
* Department of Physical Chemistry, University of Malaga, Campus de Teatinos s/n, Malaga 29071, Spain

5 Center for Nano Science and Technology @ PoliMi, Istituto Italiano di Tecnologia, via Pascoli 70/3, 20133
Milano, Italy
" Department of Materials Science and Engineering, South University of Science and Technology (SUSTech),

No. 1088, Xueyuan Road, Shenzhen, Guangdong 518055, China

Table of Contents

1. Spectroelectrochemical measurements of BTI2-BTI5.......c.ooiiiiiiiiiiiiiiieeeea S2
2. DFT Calculations of BTI-BTIS......co.oii e S4
3. Charge Modulation SPeCtrOSCOPY ....uvenrinntintit et S13
A RETCICIICES. ...ttt ettt e e S14

S1



1. Spectroelectrochemical measurements of BT12-BTIS.
The UV/Vis/NIR experiments were carried out on a Varian Cary 5000 UV-Vis-NIR

spectrophotometer.
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Figure S1. UV/Vis/NIR spectra changes upon electrochemical reduction of BTI2-BTIS within an
OTTLE cell in dichloromethane at room temperature in presence of 0.1 M (n-Hex)4sNPFg supporting

electrolyte. The black, blue and red curves represent the neutral, radical anion and n-dimer dianion

bands, respectively.
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Figure S2. UV/Vis/NIR spectra changes upon electrochemical reduction of BTI2 within an OTTLE
cell in dichloromethane at room temperature in presence of 0.1 M (n-Bu)sNPFs (right) and (n-

Hex)4NPFs (left) supporting electrolytes. The black and blue curves represent the neutral and radical

anion bands, respectively.

BTI3—BTI3 7/ —[BTI3 ]2 BTIS —BTI3 ™/ — [BTI3]»
473

:i 710 :i

& S 305 714

0] Q

Q o

c c

1] 3]

a o

[ [

o o

_8 B 1336 1612

< < | 1334
400 600 800 1000 1200 1400 1600 1800 2000 400 600 800 1000 1200 1400 1600 1800 2000

Wavelength (nm) Wavelength (nm)

Figure S3. UV/Vis/NIR spectra changes upon electrochemical reduction of BTI3 within an OTTLE
cell in dichloromethane at room temperature in presence of 0.1 M (n-Bu)sNPFs (right) and (n-

Hex)4NPFs (left) supporting electrolytes. The black, blue and red curves represent the neutral, radical

anion and n-dimer dianion bands, respectively.
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2. DFT Calculations for BTI12-BTI5.

Figure S4. DFT optimized structures (frontal and lateral views) of BTI2-BTI5 monomers (LC-wPBE-
GD3BJ/6-31G**).
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Figure S5. DFT optimized structures (frontal and lateral views) of BTI2, BTI3 and BTI4 parallel n-

dimer radical anions (LC-wPBE-GD3BJ/6-31G**).

S4



LUMO

SOMO

HOMO

£ 4
Rz

[BTI2],-

[BTI3],

e I o

9
9
9
g P A
2 v < » ]
B AP s D

5 P

[BTI4],-

Figure S6. DFT optimized frontier molecular orbitals (HOMO, SOMO and LUMO) energy levels of

BTI2-BTI4 n-dimer radical anions (LC-wPBE-GD3BJ/6-31G**). Isovalue: 0.035.
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Figure S7. TD-DFT spectra calculated using the M06-2X functional over the previous M06-2X-

GD3/6-31G**-optimized structures
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Figure S8. TD-DFT spectra calculated using the (a) LC-wPBE and (b) wB97XD functionals over the
previous LC-wPBE-GD3BJ/6-31G**-optimized structures.
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Figure S9. Selected Miilliken atomic charges on the molecular domains for the neutral, radical anion

and dianion species of BT12-BTIS isolated monomers calculated at LC-wPBE-GD3BJ/6-31G** level.
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Figure S10. Selected Miilliken atomic charges on the molecular domains of BTI2-BTI4 n-dimer
radical anions calculated at LC-wPBE-GD3BJ/6-31G** level. The charge delocalization extension

in the n-dimers is highlighted in blue.
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Figure S11. Selected bond length changes [A] on the molecular domains of BTI2-BTI4 monomers
when going from the neutral to the radical anion state calculated at LC-wPBE-GD3BJ/6-31G** level.
The bond length modifications (Ax) larger than 0.010 A are highlighted in red and those highlighted

in blue corresponds to 0.005 A <Ax > 0.010 A.
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LC-wPBE-GD3BJ/6-31G**
A) Binding Energy Calculation:

n-dimer radical anion, [BTI2]2: syn disposition
1. Neutral monomer opt.: HF = - 3006.57887759

2. Radical anion monomer opt.: HF = - 3006.68408443

> (HF )monomers opt. = - 6013.26296202
3. m-dimer radical anion opt.: HFx-dimer opt = - 6013.31755851

Ebina (syn disposition) = HF r-dimer opt - ) (HF)monomers opt. = -34.3 kcal/mol

n-dimer adical anion, [BTI2]2": anti disposition
1. Neutral monomer opt.: HF = - 3006.57887759

2. Radical anion monomer opt.: HF = - 3006.68408443

Z(HF)monomerS opt. = - 6013.26296202
3. m-dimer radical anion opt.: HFx-dimer opt = - 6013.32020694

Ebind (anti disposition) = HFr-dimer opt - Y (HF)monomers opt. = -35.9 kcal/mol

a-dimer dianion, [BTI2"]2: syn disposition
1. Radical anion monomer opt. x 2: HF = - 3006.68408443 x 2

Z(HF)monomerS opt. = - 60 1 3.368 16886
2. m-dimer dianion opt.: HF r-dimer opt = -6013.40256534

Ebina (syn diSpOSitiOIl) = HFn-dimer opt - Z(HF)monomers opt. = -21.6 kcal/mol

n-dimer dianion, [BTI2"]2: anti disposition
1. Radical anion monomer opt. x 2: HF = - 3006.68408443 x 2

> (HF )monomers opt. = - 6013.36816886
2. m-dimer dianion opt.: HF z-gimer opt = -6013.40138018

Ebind (anti diSpOSitiOll) = HF r-dimer opt = Z(HF)monomers opt. = -20.8 kcal/mol

B) Interaction Energy Calculation:

n-dimer radical anion, [BTI2]2": syn disposition
1. Neutral monomer sp: HF =-3006.57793307

2. Radical anion monomer sp: HF =-3006.68305285

> (HF)monomers sp = - 6013.26098592
3. m-dimer radical anion opt.: HFx-dimer opt = - 6013.31755851
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Eint (syn disposition) = HFr-dimer opt - Z(HF)monomers sp= - 35.5 kcal/mol
n-dimer radical anion, [BTI2]2": anti disposition
1. Neutral monomer sp: HF =-3006.57736088

2. Radical anion monomer sp: HF =-3006.68275751

> (HF)monomers sp = - 6013.26011839
3. m-dimer radical anion opt.: HFr-dimer opt = - 6013.32020694

Eint (anti disposition) = HF z-dimer opt - D (HF)monomers sp = - 37.7 kcal/mol
n-dimer dianion, [BTI2"]2: syn disposition
1. Radical anion monomer sp: HF = - 3006.68328381
2. Radical anion monomer sp: HF = - 3006.68224394

Z(HF)monomerS sp = - 601336552775
3. m-dimer radical anion opt.: HFr-dimer opt = - 6013.40256534

Eint (syn diSPOSitiOH) = H n-dimer opt - Z(HF)monomers sp = - 23.2 kcal/mol
n-dimer dianion, [BTI2"]2: anti disposition
1. Radical anion monomer sp: HF = - 3006.68245896
2. Radical anion monomer sp: HF = - 3006.68271960

Z(HF)monomerS sp = - 60 1 3 .365 1 7856
3. m-dimer radical anion opt.: HFz-dimer opt = - 6013.40138018

Eint (anti diSpOSitiOH) = HFr-dimer opt = Z(HF)monomers sp= = 22.7 kcal/mol

C) Free Energy of formation Calculations (at 298 K):

a-dimer radical anion, [BTI2]2": syn disposition
4. Neutral monomer freq: Sum of electronic and thermal Free Energies = -3005.500159

5. Radical anion monomer freq: Sum of electronic and thermal Free Energies = -3005.610522

Z(E)monomers ﬁ-eq = - 601 1 .1 10681
6. m-dimer radical anion freq.: Sum of electronic and thermal Free Energies = - 6011.133092

AG' (Syl’l diSpOSitiOIl) = Er-dimer freq - Z(E)manomers freq= - 14.1 kcal/mol
n-dimer radical anion, [BTI2]2": anti disposition
1. Neutral monomer freq: Sum of electronic and thermal Free Energies = -3005.500159
2. Radical anion monomer freq: Sum of electronic and thermal Free Energies = -3005.610522

Z(E)monomers ﬁ'eq = - 601 1 .1 10681
3. m-dimer radical anion freq.: Sum of electronic and thermal Free Energies =- 6011.132166
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AGY% (anti diSpOSitiOIl) = En-dimer freq - Z(E)monomers freq= = 13.5 kcal/mol
a-dimer dianion, [BTI2"]2: syn disposition
4. Radical anion monomer freq: Sum of electronic and thermal Free Energies = -3005.610522
5. Radical anion monomer freq: Sum of electronic and thermal Free Energies =-3005.610522

Z(E)monomers freq = - 6011.221044
6. m-dimer radical anion freq.: Sum of electronic and thermal Free Energies = - 6011.214091

AGY% (syn diSpOSitiOIl) = En-dimer freq = Z(E)monomers freq = 4.4 kcal/mol
n-dimer dianion, [BTI2"|2: anti disposition
4. Radical anion monomer freq: Sum of electronic and thermal Free Energies = -3005.610522
5. Radical anion monomer freq: Sum of electronic and thermal Free Energies =-3005.610522

Z(E)monomers freq = - 6011.221044
6. m-dimer radical anion freq.: Sum of electronic and thermal Free Energies =- 6011.213189

AG' (anti diSpOSitiOD) = En-dimer freq - Z(E)monomers freq = 4.9 kcal/mol

All the frequency calculations are carried out on the previously optimized systems at the same

theoretical level. No imaginary frequencies were found.
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3. Charge Modulation Spectroscopy (CMS).
The OTFT used for the CMS measurements, as a top-gate, bottom-contact architecture for optimized
device performance.

Source-drain electrodes (3 nm Cr and 30 nm Au) were patterned on borosilicate glass substrates
by photolithography. The substrates were subsequently cleaned by sonication in acetone, isopropanol
followed by UV-ozone and oxygen plasma treatment. The semiconductor layers were spin-coated
from 3 mg mL™! anhydrous chloroform or tetrahydrofuran (THF) solutions and then were thermally
annealed at 80°Cfor 30 min. Dielectric layers were spin coated from diluted CYTOP solutions (CTL-
809M:CT-SOLV180 = 2:1 (v:v), Asahi Glass Co., Ltd.), then they were annealed at 80°C for 1 h.
Finally, 50 nm Al was evaporated on top as the gate electrode. The devices were characterized with
Keithley 4200 semiconductor characterization system. All device fabrication and characterization

were carried out in Na-filled glove box.
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Figure S12. Top: UV/vis/NIR spectra changes at room temperature of a) BTI3 and (b) BTI4
within an OTTLE cell in dichloromethane containing 0.1 M (n-Bu)4 NPF¢ as supporting electrolytes.
Down: Evolution of the CMS spectra of semitransparent OFETs with (a) BTI3 and (b) BTI4

semiconductors as the active material at T=300 K.
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