Supplementary Information

Ingenious fabrication of metal-organic framework/graphene oxide composites as aptasensors with superior electrochemical recognition capability

Qian-Qian Zhu,^a Han-Wen Zhang,^a Rongrong Yuan,^b and Hongming He^{*a}

^a Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, P. R. China.

^b Department of Materials Science and Engineering, Jilin Jianzhu University, Changchun 130118, P. R. China.

Corresponding Author

*E-mail: hehongminghz@163.com or hxxyhhm@tjnu.edu.cn (for H. He)

Figure S1. PXRD patterns of UiO-66-NH₂ and UiO-66-NH₂/GO.

Figure S2. TGA curves of UiO-66-NH $_2$ and UiO-66-NH $_2$ /GO.

Figure S3. BET surface area plots and pore size distribution of GO.

Figure S4. BET surface area plots and pore size distribution of UiO-66-NH₂.

Figure S5. BET surface area plots and pore size distribution of UiO-66-NH₂/GO.

	Table S1 BET	surface area repo	orts of GO.	UiO-66-NH ₂ ,	and UiO-66-NH ₂ /GO
--	--------------	-------------------	-------------	--------------------------	--------------------------------

Material	BET (m ² g ⁻¹)	Slope (g cm ⁻³)	Y-Intercept (g cm ⁻³)	С	$Qm (cm^3 g^{-1})$	Correlation
						Coefficient
GO	25.6593 ± 0.2694	0.148309 ± 0.001739	0.021320 ± 0.000383	7.956219	5.8952	0.9995878
UiO-66-NH ₂	831.6632 ± 8.2183	0.005229 ± 0.000052	0.000005 ± 0.000001	1076.771264	191.0737	0.9997556
UiO-66-NH ₂ /GO	307.0955 ± 0.8324	0.014163 ± 0.000038	0.000010 ± 0.000001	1371.065264	70.5548	0.9999853

Figure S6. The full XPS survey scan spectrum of GO.

Figure S7. The full XPS survey scan spectrum of UiO-66-NH₂.

Figure S8. The full XPS survey scan spectrum of UiO-66-NH₂/GO.

Figure S9. The high-resolution XPS spectrum of P 2p in UiO-66-NH₂/GO.

Figure S10. CV curves of different modified electrodes for the GO-based aptasensor.

Figure S11. CV curves of different modified electrodes for the UiO-66-NH₂-based aptasensor.

Figure S12. CV curves of different modified electrodes for the UiO-66-NH₂/GO-based aptasensor.

Figure S13. EIS Nyquist plots and equivalent circuit.