Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2020

Supporting information

Manipulating the Phase Transformation Temperature to Achieve Cubic Cu₅FeS_{4-x}Se_x and Enhanced Thermoelectric Performance

Lijie Guo^a, Bin Zhang^b, Huaxing Zhu^a, Hong Wu^a, Yanci Yan^a, Xiangnan Gong^b, Xu Lu^a, Guang Han^{*c}, Guoyu

Wang^{*d,e}, Xiaoyuan Zhou^{*a,b}

^aCollege of Physics, Chongqing University, Chongqing 401331, P. R. China.

Email: xiaoyuan2013@cqu.edu.cn

- ^bAnalytical and Testing Center, Chongqing University, Chongqing 401331, P. R. China.
- ^cCollege of Materials Science and Engineering, Chongqing University, Chongqing 400044, P. R. China.

Email: guang.han@cqu.edu.cn

^dChongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, P.

R. China.

Email: guoyuw@cigit.ac.cn

^eUniversity of Chinese Academy of Sciences, Beijing 100049, P. R. China.

Fig. S1 Experimental XRD pattern of the $Cu_5FeS_2Se_2$ sample and the corresponding results of Rietveld refinement. The low values of R_{wp} (2.12%) and R_p (1.37%) indicate the reliability of the refinement. The XRD pattern can be indexed to the high cubic bornite phase.

Fig. S2 Electron microscopy characterization of Cu_5FeS_4 : (a) TEM image, (b) HRTEM image of the marked region in (b) and (c) the corresponding FFT pattern, (d) HAADF image and EDS elemental mapping of Cu, Fe and S, (e) EDS spectrum.

Fig. S3 SEM images of sintered Cu₅FeS_{4-x}S_x: (a) x = 0, (b) x = 0.4, (c) x = 2.0. The sintered samples are composed of micrometer-sized particles.

Fig. S4 (a) UV-vis absorption spectra, (b) $(\alpha hv)^2 vs$ photon energy plots for Cu₅FeS_{4-x}Se_x (x = 0, 0.4, 0.8, 1.5, 2.0) at room temperature.

Fig. S5 Calculated Seebeck-Normalized conductivity (|S|- σ/σ_{E0}) relation assuming (a) acoustic phonon scattering, and (b) ionization scattering dominant charge carrier transport. The σ_{E0} could be extracted from a pair of experimentally measured *S* and σ at the same temperature.

Materials	T ^{a)} [K]	zT ^{b)}	$S^2 \sigma^{b)}$ [mW m ⁻¹ K ⁻²]	Synthesis method	References
Cu ₅ FeS ₄	735	0.49	0.31	Melting + annealing + SPS	This work
Cu ₅ FeS _{3.6} Se _{0.4}	735	0.60	0.39	Melting + annealing + SPS	This work
Cu ₅ FeS _{3.2} Se _{0.8}	735	0.57	0.42	Melting + annealing + SPS	This work
$Cu_5FeS_{2.5}Se_{1.5}$	735	0.56	0.56	Melting + annealing + SPS	This work
$Cu_5FeS_{2.0}Se_{2.0}$	735	0.54	0.56	Melting + annealing + SPS	This work
Cu ₅ FeS ₄	700	~0.38	~0.25	Melting + annealing + SPS	1
Cu _{5.04} Fe _{0.96} S ₄	700	0.52	~0.35	Melting + annealing + SPS	1
Cu ₅ FeS ₄	710	0.62	0.39	Colloidal synthesis + SPS	2
Cu ₅ FeS ₄	690	0.56	0.4	Colloidal synthesis + SPS	3
Cu ₅ Fe _{0.95} Mn _{0.05} S ₄	543	0.55	0.34	Ball milling + hot pressing	4
Cu ₅ FeS _{3.8} Se _{0.2}	540	0.5	0.43	Ball milling + SPS	5
Cu ₅ FeS _{3.8} Se _{0.2}	670	~0.59	~0.41	Ball milling + SPS	5
Cu ₅ FeS _{3.6} Se _{0.4}	670	~0.66	~0.52	Ball milling + SPS	5
Cu _{4.972} Fe _{0.968} S ₄	550	0.79	~0.44	Ball milling + hot pressing	6
Cu _{4.96} Co _{0.04} FeS ₄	590	~0.5	~0.30	Ball milling + hot pressing	7
Cu ₅ FeS ₄	593	0.28	0.24	Ball milling + sintering	8
$\frac{Cu_{4.96}Co_{0.04}Fe_{0.96}Zn_{0}}{_{.04}S_{4}}$	590	0.6	0.37	Ball milling + hot pressing	9
Cu ₅ FeS ₄ nanocomposite	663	0.55	~0.56	Chemical synthesis + particle blending + pulse electric current sintering	10

Table S1. A summary of thermoelectric properties of Cu₅FeS₄ based materials

^{a)} The temperature at which maximum zT was achieved; ^{b)} zT and $S^2\sigma$ at T.

References:

- 1. P. F. Qiu, T. S. Zhang, Y. T. Qiu, X. Shi and L. D. Chen, Energy Environ. Sci., 2014, 7, 4000-4006.
- A. J. Zhang, B. Zhang, W. Lu, D. D. Xie, H. X. Ou, X. D. Han, J. Y. Dai, X. Lu, G. Han, G. Y. Wang and X. Y. Zhou, *Adv. Funct. Mater.*, 2018, 28, 1705117.
- A. J. Zhang, X. C. Shen, Z. Zhang, X. Lu, W. Yao, J. Y. Dai, D. D. Xie, L. J. Guo, G. Y. Wang and X. Y. Zhou, J. Mater. Chem. C, 2017, 5, 301-308.
- 4. G. Guelou, A. V. Powell and P. Vaqueiro, J. Mater. Chem. C, 2015, 3, 10624-10629.
- 5. V. P. Kumar, T. Barbier, P. Lemoine, B. Raveau, V. Nassif and E. Guilmeau, *Dalton Trans.*, 2017, 46, 2174-2183.
- 6. S. O. J. Long, A. V. Powell, P. Vaqueiro and S. Hull, Chem. Mater., 2018, 30, 456-464.
- 7. A. O. Moghaddam, A. Shokuhfar and A. Cabot, J. Alloy. Compd., 2018, 750, 1-7.
- 8. A. O. Moghaddam, A. Shokuhfar, A. Cabot and A. Zolriasatein, Powder Technol., 2018, 333, 160-166.
- A. O. Moghaddam, A. Shokuhfar, P. Guardia, Y. Zhang and A. Cabot, J. Alloy. Compd., 2019, 773, 1064-1074.
- M. Singh, P. Dwivedi, D. Mott, K. Higashimine, M. Ohta, H. Miwa, T. Akatsuka and S. Maenosono, *Ind. Eng. Chem. Res.*, 2019, 58, 3688-3697.