Electronic Supplementary Information for

Light-directed on-chip shape transformation of a single gold nanoparticle

Yinfeng Long^a, Shuangshuang Wang^a, Yunxia Wang^a, Yan Qiao^{*b} and Tao Ding^{*a}

^a Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education of China, School of Physics and Technology, Wuhan University. Wuhan, 430072 China.

*Email: <u>t.ding@whu.edu.cn</u>

^{b.} Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.

*Email: yanqiao@iccas.ac.cn

Table S1 Geometry setting of different shaped Au NPs (simplified from the SEM images in Figure 1c) for FDTD simulations

Time (s)	0	4	6	10
FDTD Geometry	Sphore	Herragen	Dentagen	Driem
	Sphere	пехадон	rentagon	1113111
Size (nm)	Φ85	Φ 80, 45*20ª	Φ 76, 46*20°	90*60
Volume(nm ³)	3.2*10 ⁵	3.4*10 ⁵	2.9*10 ⁵	3.1*10 ⁵

^{a)} Size of the facet in a format of l^*h . Here l is the length of the facet while h is the height of the facet.

Table S2 Laser-induced growth, etching and ripening of Au NPs under differentirradiation conditions

Power (mW) Conc. (mM)ª	1	2	3	4
5	growth	growth	growth	ripening
25	growth	growth	ripening	ripening
50	dissolution	dissolution	dissolution	dissolution

^{a)} Concentration of HAuCl₄ in aqueous solution.

Fig. S1 (a-c) Dark field scattering spectra showing kinetics of AuNPs in $HAuCl_4$ solution (25 mM) at different irradiation powers. (a) 0.2 mW, (b) 0.5 mW, (c) 2.8 mW. (d) Dark field scattering kinetics of AuNPs in water as a control at irradiation power of 2.8 mW.

Fig. S2 The statistic histogram of Au NPs shape before and after the irradiation. HAuCl₄. Concentration: 20 mM. Irradiation power: 4 mW.

Fig. S3 Scattering spectra before and after laser irradiation (a) on Au film. $HAuCl_4$. Concentration: 50 mM. Irradiation power: 8 mW. (b) on Si substrate. $HAuCl_4$. Concentration: 25 mM. Irradiation power: 8 mW.

Fig. S4 UV-Vis absorbance of $HAuCl_4$ aqueous solution (10 mM).

Fig. S5 Temperature distribution around Au NPs on Si substrate with water medium. Irradiation power: (a)2 mW, (b) 4 mW, (c) 6 mW. Scale bars are 100 nm. (d) Change of Au surface temperature with irradiation power.

Fig. S6 Scattering spectra of Au NPs before and after the irradiation under different conditions. (a) in 5 mM HAuCl₄ solution containing 50 mM HCl. (b) in 5 mM HAuCl₄ solution containing 50 mM NaCl. (c) in 50 mM NaAuCl₄ solution (pH=6). (d) in 50 mM HAuCl₄ solution.

Fig. S7 The EDX spectrum of the irradiated Au NP on Si substrate. Inset is the EDX mapping of Au element overlapping with the SEM image.

Fig. S8 Power dependent growth of Au NPs in the presence of $HAuCl_4$ solution (5mM). (a-c) SEM images of Au NPs after the irradiation (30 s). irradiation power: a)2 mW, b) 3 mW, c) 4 mW. d) Change of scattering spectra with irradiation power. and e) the corresponding change of the plasmon peaks.

Fig. S9 SEM images of Au nanorods (NRs) before and after the laser irradiation. Irradiation power: 1 mW. HAuCl₄. Concentration: (a): 10 mM. (b): 30 mM. The Au NRs were fabricated via e-beam lithography without any surface ligands. The irradiation results show similar trend as Au NPs: higher concentration of HAuCl₄ leads to etching of the Au NRs while lower concentration HAuCl₄ leads to growth at ends.

Fig. S10 Temperature distribution around the Au BPN on SiO_2/Si substrate with water medium. Irradiation power: 1 mW.