Supporting Information

A benzoindole-cored building block for deep blue fluorescent material: synthesis, photophysical properties, and applications in organic light-emitting diodes

Shanghui Ye, Congjin Wu, Pengfei Gu, Tai Xiang, Senyu Zhang, Tong-tong Jing, Shi Wang*, Xiaodi Yang*, Yonghua Li*, and Wei Huang

1. Materials and general methods

CzCNBPyIo, CzCNBPyIm and CzCNBPyIo were first synthesized through Suzuki reaction. The chemical structure was systematically characterized and confirmed via magnetic resonance (NMR) spectroscopy and mass spectrometry (MS). All the target products were purified by column chromatography before the characterization. NMR spectra were recorded on a Bruker Ultra Shield Plus 400 MHz NMR (1H: $400 \mathrm{MHz}, 13 \mathrm{C}: 100 \mathrm{MHz}$). The matrix assisted laser desorption ionization time of flight mass spectroscopy (MALDI-TOF MS) measurements were carried out with a Shimadzu AXIMA-CFR mass spectrometer. UVvisible absorption spectra were recorded on a Shimadzu UV-3600. Transient lifetime decay curves and absolute PLQY measurement were conducted on Edinburgh Instruments Fluorescence spectrometer (EPL-375). Photoluminescence (PL) spectra were measured on Shimadzu spectrofluorophotometer (RF-5301PC). Electrochemical behaviors were investigated on Electrochemical working station by cyclic voltammetry (CV) method with a standard three-electrode electrochemical cell in a 0.1 M tetra-n-butylammonium hexafluorophosphate $\left(\mathrm{Bu}_{4} \mathrm{NPF}_{6}\right)$ in acetonitrile solution at room temperature under nitrogen atmosphere with a scanning rate of $50 \mathrm{mV} / \mathrm{s}$. A platinum working electrode, a glassy carbon electrode, and an $\mathrm{Ag} / \mathrm{AgNO}_{3}(0.1 \mathrm{M})$ reference electrode were configured. The CV curves were calibrated using ferrocene/ferrocenium $(\mathrm{Fc} / \mathrm{Fc}+$) redox couple (4.8 eV below the vacuum level) as the internal standard. Differential scanning calorimetry (DSC) were conducted on Shimadzu DSC-60A equipment.

Supporting Information

Scheme S1. Synthetic route of CzCNBPyIo, CzCNBPyIm, and CzCNBPyIp.
1-(4-bromophenyl)-2-(pyridin-4-yl)-2,3-dihydro-1H-benzo[e]indole (1). A mixture of 2Hydroxynaphthalene ($14.711 \mathrm{~g}, 100 \mathrm{mmol}$), 4-picolylamine ($10.814 \mathrm{~g}, 100 \mathrm{mmol}$) and 4Bromobenzaldehyde ($18.5 \mathrm{~g}, 100 \mathrm{mmol}$) were heated to $120{ }^{\circ} \mathrm{C}$ under nitrogen and stirred overnight, then the reaction mixture was cooled to room temperature, extracted with ethanol and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was evaporated to afford the crude product, which was purified by column chromatography using ethyl acetate/petroleum ether (5:1) to get the target product. Yield: 75%. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.59-8.52(\mathrm{~m}, 2 \mathrm{H}), 7.77$ (dd, $J=6.8,3.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.48-7.40(\mathrm{~m}, 2 \mathrm{H}), 7.24-7.21(\mathrm{~m}, 2 \mathrm{H}), 7.20-7.14(\mathrm{~m}, 3 \mathrm{H}), 7.06$ (dd, $J=9.6,6.4 \mathrm{~Hz}, 3 \mathrm{H}), 4.80(\mathrm{dd}, J=7.6,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.59(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.42(\mathrm{~d}, J=$ $3.2 \mathrm{~Hz}, 1 \mathrm{H})$. GC-MS, m / z cacld for $\mathrm{C}_{23} \mathrm{H}_{17} \mathrm{BrN}_{2}, 401.31$; found, 402 .

Supporting Information

1-(4-bromophenyl)-2-(pyridin-4-yl)-3H-benzo[e]indole (2). DMF (6 mL) was added to a mixture of 1-(4-bromophenyl)-2-(pyridin-4-yl)-2,3-dihydro-1H-benzo[e]indole (1) (1.1603 g, $2.89 \mathrm{mmol})$ and NBS $(0.5293 \mathrm{~g}, 3.03 \mathrm{mmol})$ under the condition of dark and nitrogen flux. The reaction mixture was stirred for 12 h . Then cooling to room temperature, the mixture was extracted with ethyl acetate and water and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The crude product was purified by column chromatography using ethyl acetate/petroleum ether (3:1). Yield: $73 \% .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 12.23(\mathrm{~s}, 1 \mathrm{H}), 8.59-8.52(\mathrm{~m}, 2 \mathrm{H}), 7.77(\mathrm{dd}, J=6.8,3.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.72$ $-7.62(\mathrm{~m}, 2 \mathrm{H}), 7.48-7.40(\mathrm{~m}, 2 \mathrm{H}), 7.20-7.14(\mathrm{~m}, 3 \mathrm{H}), 7.10-7.06(\mathrm{~m}, 3 \mathrm{H}) . \mathrm{GC}-\mathrm{MS}, \mathrm{m} / \mathrm{z}$ cacld for $\mathrm{C}_{23} \mathrm{H}_{15} \mathrm{BrN}_{2}, 400.06$; found, 401.

4-fluoro-4'-(2-(pyridin-4-yl)-3H-benzo[e]indol-1-yl)-[1,1'-biphenyl]-3-carbonitrile (3). (2) $(0.8099 \mathrm{~g}, 2.03 \mathrm{mmol})$, (3-cyano-4-fluorophenyl)boronic acid ($0.4029 \mathrm{~g}, 2.442 \mathrm{mmol}$), $\mathrm{K}_{2} \mathrm{CO}_{3}$ ($2 \mathrm{~mol} / \mathrm{L}$) 3.01 mL , tetrakis(triphenylphosphine)palladium ($0.149 \mathrm{~g}, 0.129 \mathrm{mmol}$) were dissolved in DMF under nitrogen atmosphere. This reaction mixture was stirred at $97^{\circ} \mathrm{C}$ for 12 h . The mixture was diluted with ethyl acetate and washed with water three times. The combined organic layer was dried over anhydrous MgSO_{4} and concentrated in reduce pressure to give the crude product, which was purified on column chromatography using ethyl acetate/petroleum ether (3:1) as eluent, yield: 70.5\%. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}$) $\delta 12.37$ (s, $1 \mathrm{H}), 8.44(\mathrm{~s}, 1 \mathrm{H}), 8.39-8.31(\mathrm{~m}, 2 \mathrm{H}), 8.13(\mathrm{dd}, J=6.4,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.97-7.91(\mathrm{~m}, 2 \mathrm{H})$, $7.88-7.81(\mathrm{~m}, 2 \mathrm{H}), 7.63-7.46(\mathrm{~m}, 2 \mathrm{H}), 7.41-7.34(\mathrm{~m}, 2 \mathrm{H}), 7.20-7.14(\mathrm{~m}, 2 \mathrm{H}), 7.11-$ $7.07(\mathrm{~m}, 3 \mathrm{H})$, GC-MS, m / z cacld for $\mathrm{C}_{30} \mathrm{H}_{18} \mathrm{FN}_{3}, 439.15$; found, 440.37.

4'-(5-bromo-2-(pyridin-4-yl)-3H-benzo[e]indol-1-yl)-4-fluoro-[1,1'-biphenyl]-3-

carbonitrile (4). (3) ($0.6283 \mathrm{~g}, 1.432 \mathrm{mmol})$, NBS ($0.3125 \mathrm{~g}, 1.791 \mathrm{mmol}$), DMF 6 mL were stirred for 12 h at $50{ }^{\circ} \mathrm{C}$ under a dark and nitrogen atmosphere. The crude product was purified by column chromatography using ethyl acetate/petroleum ether (3:1) as eluent; yield: 69.98\%. ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO) $\delta 12.46$ (s, 1H), 8.43 (s, 1H), 8.33 - 8.27 (m, 2H), 8.03

Supporting Information

- 7.98 (m, 2H), 7.94 (d, $J=6.4 \mathrm{~Hz}, 2 \mathrm{H}$), $7.91-7.85(\mathrm{~m}, 2 \mathrm{H}), 7.81-7.73(\mathrm{~m}, 2 \mathrm{H}), 7.61-7.55$ $(\mathrm{d}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.55-7.49(\mathrm{~m}, 2 \mathrm{H}), 7.45-7.2(\mathrm{~s}, 1 \mathrm{H}), \mathrm{GC}-\mathrm{MS}, \mathrm{m} / \mathrm{z}$ cacld for $\mathrm{C}_{30} \mathrm{H}_{17} \mathrm{BrFN}_{3}, 517.06$; found, 518.28.

4'-(5-bromo-2-(pyridin-4-yl)-3H-benzo[e]indol-1-yl)-4-(9H-carbazol-9-yl)-[1,1'-

biphenyl]-3-carbonitrile (5). (4) ($0.5182 \mathrm{~g}, 1.002 \mathrm{mmol}$), carbazole ($0.640 \mathrm{~g}, 3.789 \mathrm{mmol}$), $\mathrm{Cs}_{2} \mathrm{CO}_{3}(0.986 \mathrm{~g}, 2.96 \mathrm{mmol})$ were dissolved in DMF 5 mL under nitrogen atmosphere. This reaction mixture was stirred for 12 h at $97^{\circ} \mathrm{C}$. The crude product was purified by column chromatography using ethyl acetate/petroleum ether (2:1) as eluent, yield: $60 \% .{ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO) $\delta 12.50(\mathrm{~s}, 1 \mathrm{H}), 8.73(\mathrm{~s}, 1 \mathrm{H}), 8.53-8.47(\mathrm{~m}, 4 \mathrm{H}), 8.45-8.38(\mathrm{~m}, 2 \mathrm{H})$, $8.30-8.28(\mathrm{~m}, 2 \mathrm{H}), 8.22-8.06(\mathrm{~m}, 2 \mathrm{H}), 7.96-7.88(\mathrm{~m}, 3 \mathrm{H}), 7.70(\mathrm{~s}, 1 \mathrm{H}), 7.68-7.62(\mathrm{~m}$, 1H), $7.56-7.52(\mathrm{~m}, 1 \mathrm{H}), 7.41-7.36(\mathrm{~m}, 4 \mathrm{H}), 7.34-7.28(\mathrm{~m}, 1 \mathrm{H}), 7.26-7.21(\mathrm{~m}, 2 \mathrm{H})$, GCMS, m / z cacld for $\mathrm{C}_{42} \mathrm{H}_{25} \mathrm{BrN}_{4}$, 664.13; found, 665.32.

4'-(5-bromo-3-ethyl-2-(pyridin-4-yl)-3H-benzo[e]indol-1-yl)-4-(9H-carbazol-9-yl)-[1,1'-

 biphenyl]-3-carbonitrile (6). (5) ($0.1423 \mathrm{~g}, 0.214 \mathrm{mmol}$), bromoethane ($0.041 \mathrm{~g}, 0.369$ $\mathrm{mmol}), \mathrm{NaH}(0.021 \mathrm{~g}, 0.525 \mathrm{mmol})$ were dissolved in 10 mL of anhydrous DMF at room temperature for 10 minutes, then a solution of bromine ethane was added, dropwise. The mixture was then stirred 10 h at room temperature. The white powdery product was obtained to be $0.104 \mathrm{~g}(69.8 \%) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}$) $\delta 8.71(\mathrm{~s}, 1 \mathrm{H}), 8.55-8.35(\mathrm{~m}, 6 \mathrm{H}), 8.29$ $-8.24(\mathrm{~m}, 2 \mathrm{H}), 8.18-8.01(\mathrm{~m}, 2 \mathrm{H}), 7.95-7.83(\mathrm{~m}, 3 \mathrm{H}), 7.72(\mathrm{~s}, 1 \mathrm{H}), 7.61-7.56(\mathrm{~m}, 1 \mathrm{H})$, $7.51-7.43(\mathrm{~m}, 1 \mathrm{H}), 7.32(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 4 \mathrm{H}), 7.29-7.23(\mathrm{~m}, 1 \mathrm{H}), 7.21-7.16(\mathrm{~m}, 2 \mathrm{H}), 4.36$ (q, $J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.46(\mathrm{t}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H})$ MALDI-TOF, m / z cacld for $\mathrm{C}_{44} \mathrm{H}_{29} \mathrm{BrN}_{4}, 692.16$; found, 693.22.
4'-(5-(2-(9H-carbazol-9-yl)phenyl)-3-ethyl-2-(pyridin-4-yl)-2,3-dihydro-1H-benzo[e]indol-1-yl)-4-(9H-carbazol-9-yl)-[1,1'-biphenyl]-3-carbonitrile (CzCNBPyIo).

 The title compound was synthesized according to method (conditions: (1)) as a yellowish powder in 24.1% yield $(0.024 \mathrm{~g}) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.76(\mathrm{~s}, 1 \mathrm{H}), 8.57-8.43(\mathrm{~m}$,
Supporting Information

$4 \mathrm{H}), 8.41-8.35(\mathrm{~m}, 2 \mathrm{H}), 8.31-8.27(\mathrm{~m}, 6 \mathrm{H}), 8.21-8.11(\mathrm{~m}, 6 \mathrm{H}), 7.93-7.81(\mathrm{~m}, 3 \mathrm{H}), 7.77$ $-7.69(\mathrm{~m}, 4 \mathrm{H}), 7.62-7.57(\mathrm{~m}, 1 \mathrm{H}), 7.50-7.41(\mathrm{~m}, 2 \mathrm{H}), 7.34(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 4 \mathrm{H}), 7.26-7.20$ $(\mathrm{s}, 1 \mathrm{H}), 7.19-7.11(\mathrm{~m}, 2 \mathrm{H}), 3.65(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.35(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$. MALDI-TOF, m / z cacld for $\mathrm{C}_{62} \mathrm{H}_{41} \mathrm{~N}_{5}$, 855.34; found, 855.31.

4'-(5-(3-(9H-carbazol-9-yl)phenyl)-3-ethyl-2-(pyridin-4-yl)-2,3-dihydro-1H-
benzo[e]indol-1-yl)-4-(9H-carbazol-9-yl)-[1,1'-biphenyl]-3-carbonitrile (CzCNBPyIm). The title compound was synthesized according to method (conditions (1)) as a yellowish powder in 29.8% yield $(0.042 \mathrm{~g}) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.62(\mathrm{~s}, 1 \mathrm{H}), 8.17-8.11(\mathrm{~m}$, $6 \mathrm{H}), 8.0-7.98(\mathrm{~s}, 1 \mathrm{H}), 7.84(\mathrm{~m}, 8 \mathrm{H}), 7.79-7.77(\mathrm{~s}, 1 \mathrm{H}), 7.73-7.71(\mathrm{~m}, 3 \mathrm{H}), 7.68-7.41(\mathrm{~m}$, $6 \mathrm{H}), 7.37-7.20(\mathrm{~m}, 10 \mathrm{H}), 4.33(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.26(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$. MALDI-TOF, m / z cacld for $\mathrm{C}_{62} \mathrm{H}_{41} \mathrm{~N}_{5}, 855.34$; found, 855.62.

4'-(5-(4-(9H-carbazol-9-yl)phenyl)-3-ethyl-2-(pyridin-4-yl)-2,3-dihydro-1H-benzo[e]indol-1-yl)-4-(9H-carbazol-9-yl)-[1,1'-biphenyl]-3-carbonitrile (CzCNBPyIp). The title compound was synthesized according to method (conditions: (1)) as a yellowish powder in 49.3% yield $(0.120 \mathrm{~g}) .{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}, \mathrm{DMSO}) \delta 8.73(\mathrm{~s}, 1 \mathrm{H}), 8.60(\mathrm{dd}, J=$ $14.4,3.6 \mathrm{~Hz}, 2 \mathrm{H}), 8.40(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.28-8.15(\mathrm{~m}, 3 \mathrm{H}), 8.10-7.92(\mathrm{~m}, 4 \mathrm{H}), 7.92-$ $7.75(\mathrm{~m}, 6 \mathrm{H}), 7.59(\mathrm{~s}, 1 \mathrm{H}), 7.59-7.22(\mathrm{~m}, 18 \mathrm{H}), 4.40(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.26(\mathrm{t}, J=7.2 \mathrm{~Hz}$, $3 \mathrm{H})$. MALDI-TOF, m / z cacld for $\mathrm{C}_{62} \mathrm{H}_{41} \mathrm{~N}_{5}, 855.34$; found, 855.57.

2-fluoro-5-(2-(pyridin-4-yl)-3H-benzo[e]indol-1-yl)benzonitrile (2a).

The title compound was synthesized according to method (i). Yield: 65%. ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d6) $\delta 12.42(\mathrm{~s}, 1 \mathrm{H}), 8.54-8.48(\mathrm{~m}, 2 \mathrm{H}), 8.11(\mathrm{~s}, 1 \mathrm{H}), 7.95(\mathrm{dd}, J=8.4,1.2 \mathrm{~Hz}$, $1 \mathrm{H}), 7.89$ (ddd, $J=8.4,5.2,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.77-7.73(\mathrm{~m}, 1 \mathrm{H}), 7.73-7.67(\mathrm{~m}, 2 \mathrm{H}), 7.40-$ 7.33 (m, 2H), 7.30 (ddd, $J=8.4,7.2,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.27-7.24$ (m, 2H). GC-MS, m/z Cacld for $\mathrm{C}_{24} \mathrm{H}_{14} \mathrm{FN}_{3}, 363.40$; found, 364 .

5-(5-bromo-2-(pyridin-4-yl)-3H-benzo[e]indol-1-yl)-2-fluorobenzonitrile (2b).

Supporting Information

The title compound was synthesized according to method (ii). ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSOd6) $\delta 12.54(\mathrm{~s}, 1 \mathrm{H}), 8.54-8.48(\mathrm{~m}, 2 \mathrm{H}), 8.21(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.10(\mathrm{~s}, 1 \mathrm{H}), 8.03(\mathrm{~d}, J=$ $1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.87(\mathrm{ddd}, J=7.6,5.2,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.72(\mathrm{t}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.50(\mathrm{t}, J=7.6,1.3$ $\mathrm{Hz}, 1 \mathrm{H}), 7.44(\mathrm{~s}, 1 \mathrm{H}), 7.39$ (ddd, $J=8.4,6.8,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.24-7.21(\mathrm{~m}, 2 \mathrm{H}) . \mathrm{GC}-\mathrm{MS}, \mathrm{m} / \mathrm{z}$ cacld for $\mathrm{C}_{24} \mathrm{H}_{13} \mathrm{BrFN}_{3}, 442.29$; found, 442.497.

5-(5-bromo-2-(pyridin-4-yl)-3H-benzo[e]indol-1-yl)-2-(9H-carbazol-9-yl)benzonitrile (2c). The title compound was synthesized according to method (iii). Yield: 46%. ${ }^{1} \mathrm{H}$ NMR (400 MHz, d-DMSO) $\delta{ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO-d6) $\delta 12.63(\mathrm{~s}, 1 \mathrm{H}), 8.63-8.58(\mathrm{~m}, 2 \mathrm{H}), 8.35$ (s, 1H), $8.32(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 8.26(\mathrm{dd}, J=7.6,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.08(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.05$ (dd, $J=8.4,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.97(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.71(\mathrm{dd}, J=7.6,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.59-7.50$ $(\mathrm{m}, 4 \mathrm{H}), 7.46(\mathrm{~s}, 1 \mathrm{H}), 7.41-7.33(\mathrm{~m}, 5 \mathrm{H})$. MA LDI-TOF, m / z cacld for $\mathrm{C}_{36} \mathrm{H}_{21} \mathrm{BrN}_{4}, 589.50$; found, 588.716.

5-(5-(4-(9H-carbazol-9-yl)phenyl)-2-(pyridin-4-yl)-3H-benzo[e]indol-1-yl)-2-(9H-

 carbazol-9-yl)benzonitrile (2d). The title compound was synthesized according to method (iv). Yield: $60 \% .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{d}-\mathrm{DMSO}$) $\delta 12.62(\mathrm{~s}, 1 \mathrm{H}), 8.64-8.59(\mathrm{~m}, 2 \mathrm{H}), 8.39(\mathrm{~s}$, $1 \mathrm{H}), 8.33(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 8.31-8.27(\mathrm{~m}, 2 \mathrm{H}), 8.10(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.04-7.98(\mathrm{~m}$, 2H), $7.88-7.83(\mathrm{~m}, 3 \mathrm{H}), 7.81-7.74(\mathrm{~m}, 2 \mathrm{H}), 7.63-7.54(\mathrm{~m}, 5 \mathrm{H}), 7.54-7.49(\mathrm{~m}, 4 \mathrm{H}), 7.45$ $(\mathrm{s}, 1 \mathrm{H}), 7.42-7.37(\mathrm{~m}, 5 \mathrm{H}), 7.36-7.30(\mathrm{~m}, 2 \mathrm{H})$. MALDI-TOF, m / z cacld for $\mathrm{C}_{54} \mathrm{H}_{33} \mathrm{~N}_{5}$, 751.89; found, 752.067.5-(5-(3-(9H-carbazol-9-yl)phenyl)-2-(pyridin-4-yl)-3H-benzo[e]indol-1-yl)-2-(9H-carbazol-9-yl)benzonitrile (2e). The title compound was synthesized according to method(v). Yield: $71 \% .{ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d $_{6}$) $\delta 12.56(\mathrm{~s}, 1 \mathrm{H}), 8.65-8.48(\mathrm{~m}, 2 \mathrm{H})$, $8.37(\mathrm{~s}, 1 \mathrm{H}), 8.34(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 8.29-8.26(\mathrm{~m}, 2 \mathrm{H}), 8.12(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.05-$ $7.93(\mathrm{~m}, 2 \mathrm{H}), 7.86-7.81(\mathrm{~m}, 3 \mathrm{H}), 7.76-7.69(\mathrm{~m}, 2 \mathrm{H}), 7.64(\mathrm{~s}, 1 \mathrm{H}), 7.59-7.52(\mathrm{~m}, 4 \mathrm{H}), 7.48$

Supporting Information

- $7.40(\mathrm{~m}, 4 \mathrm{H}), 7.38(\mathrm{~s}, 1 \mathrm{H}) 7.36-7.31(\mathrm{~m}, 5 \mathrm{H}), 7.28-7.21(\mathrm{~m}, 2 \mathrm{H})$. MALDI-TOF, m/z cacld for $\mathrm{C}_{54} \mathrm{H}_{33} \mathrm{~N}_{5}, 751.89$; found, 751.137 .

5-(5-(4-(9H-carbazol-9-yl)phenyl)-3-ethyl-2-(pyridin-4-yl)-3H-benzo[e]indol-1-yl)-2-(9H-carbazol-9-yl)benzonitrile (CzCNPyIp).

The title compound was synthesized according to method (vi). Yield: $43 \% .{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.75(\mathrm{~s}, 1 \mathrm{H}), 8.26-8.10(\mathrm{~m}, 6 \mathrm{H}), 8.01(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.95(\mathrm{dd}, J=6.4$, $3.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.89-7.84(\mathrm{~m}, 3 \mathrm{H}), 7.81-7.72(\mathrm{~m}, 3 \mathrm{H}), 7.70-7.60(\mathrm{~m}, 3 \mathrm{H}), 7.56-7.51(\mathrm{~m}$, $6 \mathrm{H}), 7.46(\mathrm{~s}, 1 \mathrm{H}), 7.42-7.37(\mathrm{~m}, 3 \mathrm{H}), 7.30(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.18$ (d, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.39$ (q, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}$), $1.49(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$. MALDI-TOF, m / z cacld for $\mathrm{C}_{56} \mathrm{H}_{37} \mathrm{~N}_{5}, 779.50$; found, 778.628.

5-(5-(3-(9H-carbazol-9-yl)phenyl)-3-ethyl-2-(pyridin-4-yl)-3H-benzo[e]indol-1-yl)-2-(9H-carbazol-9-yl)benzonitrile (CzCNPyIm).

The title compound was synthesized according to method (vi). Yield: 36%. ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.74(\mathrm{~s}, 1 \mathrm{H}), 8.17-8.11(\mathrm{~m}, 5 \mathrm{H}), 7.98(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.92(\mathrm{dd}, J=6.4$, $3.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.89-7.77(\mathrm{~m}, 4 \mathrm{H}), 7.78-7.68(\mathrm{~m}, 3 \mathrm{H}), 7.67-7.62(\mathrm{~m}, 5 \mathrm{H}), 7.59(\mathrm{~s}, 1 \mathrm{H}), 7.57$ $-7.46(\mathrm{~m}, 3 \mathrm{H}), 7.41(\mathrm{~s}, 1 \mathrm{H}), 7.30-7.23(\mathrm{~m}, 3 \mathrm{H}), 7.16-7.11(\mathrm{~m}, 4 \mathrm{H}), 4.35(\mathrm{q}, J=7.2 \mathrm{~Hz}$, $2 \mathrm{H}), 1.44(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$. MALDI-TOF, m / z cacld for $\mathrm{C}_{56} \mathrm{H}_{37} \mathrm{~N}_{5}$, 779.95; found, 779.076.

Supporting Information

2. MALDI-TOF, NMR spectra and photophysical data

Figure S1. ${ }^{1} \mathrm{H}$ NMR spectra of CzCNBPyIo.

Figure S2. MALDI-TOF MS of CzCNBPyIo.

Supporting Information

Figure S3. ${ }^{1} \mathrm{H}$ NMR spectra of CzCNBPyIm.

Figure S4. MALDI-TOF MS of CzCNBPyIm.

Supporting Information

Figure S5. ${ }^{1} \mathrm{H}$ NMR spectra of CzCNBPyIp.

Figure S6. MALDI-TOF MS of CzCNBPyIp.

Supporting Information

Figure S7. ${ }^{1} \mathrm{H}$ NMR spectra of CzCNPyIp.

Figure S8. MALDI-TOF MS of CzCNPyIp.

Supporting Information

Figure S9. ${ }^{1} \mathrm{H}$ NMR spectra of CzCNPyIm.

Figure S10. MALDI-TOF MS of CzCNPyIm.

Supporting Information

Figure S11. UV-vis absorption and PL spectra of CzCNBPyIm (a), CzCNBPyIp (b), CzCNPyIp (c), CzCNPyIm (d) and 2a (e) at room-temperature in dilute solution ($1 \times 10^{-5} \mathrm{M}$).

Figure S12. Molecular structure of CzCNBPIp, CzCNBPIm, and CzCNBPIo.

Supporting Information

Figure S13. HOMO and LUMO distribution on CzCNBPIp, CzCNBPIm, and CzCNBPIo molecules.

Figure S14. AFM images of CzCNPylm (a), CzCNPylp (b), CzCNBPylm (c), CzCNBPylp (d), and CzCNBPylo (e) thin films from chloroform solution on ITO/PEDOT:PSS substrate.

Supporting Information

Table S1. DFT calculation results of CzCNBPyIo, CzCNBPyIm, CzCNBPyIp, CzCNBPIo, CzCNBPIm and CzCNBPIp.

Samples	CzCNBPylo	CzCNBPylm	CzCNBPylp	CzCNBPIo	CzCNBPIm	CzCNBPIp
HOMO (eV)	-5.32	-5.41	-5.32	-5.15	-5.22	-5.18
LUMO (eV)	-1.70	-1.73	-1.74	-1.63	-1.67	-1.67
Eg (eV)	3.63	3.68	3.57	3.52	3.56	3.51

[^0]
[^0]: ${ }^{a}$ Measured in film. ${ }^{\mathrm{b}}$ Measured in dilute toluene solution. ${ }^{\text {c }}$ Estimated from the onset of oxide/reduction potentials. ${ }^{\text {d }}$ Measured in film at 77 K .

