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S1 Supplementary Results
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Figure S1: Excitation energy levels for the combined Au-Cz-TBPe system as a function of the separation
distance (d) for the first excited singlet (left) and triplet (right) states. CT: charge transfer, LE: local
excitation, CAAC: cyclic-alkyl-amino-carbene, Cz: carbazole. Energies are shown for the co-planar
geometry.
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Figure S2: Strength of the EET and the Förster couplings between Au-Cz and TBPe molecules as a
function of the relative orientation (θx, θy, θz) for RDA = 24.2 Å.
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S0 minimum
State Excitation Weight (%) Osc. str. Energy (eV)
T1 H → L 94.7 0.000 1.90
S1 H → L 96.4 0.662 3.03
T2 H − 4→ L 17.2 0.000 3.17

H − 1→ L 15.1
H → L+ 1 47.2
H → L+ 2 16.7

T3 H − 3→ L 54.0 0.000 3.38
H → L+ 4 37.5

S1 minimum
State Excitation Weight (%) Osc. str. Energy (eV)
S0 - - - 0.13
T1 H → L 95.7 0.000 1.53
S1 H → L 96.2 0.707 2.74
T2 H − 4→ L 24.9 0.000 2.96

H − 1→ L 8.1
H → L+ 1 42.0
H → L+ 2 21.6

T3 H − 3→ L 56.4 0.000 3.19
H → L+ 3 37.4

Table S1: Electronic structure of TBPe at the geometry of minimum energy in the S0 and S1 states. All
energies are given with respect to the energy of the optimized ground state (H: HOMO, L: LUMO).
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T1 minimum
State Excitation Weight (%) Osc. str. Energy (eV)
S0 - - - 0.26
T1 H → L 96.1 0.000 1.37
S1 H → L 95.9 0.736 2.63
T2 H − 4→ L 28.1 0.000 2.88

H − 1→ L 5.4
H → L+ 1 40.2
H → L+ 2 23.0

T3 H − 3→ L 57.1 0.000 3.13
H → L+ 3 37.5

T2 minimum
State Excitation Weight (%) Osc. str. Energy (eV)
S0 - - - 0.17
T1 H → L 94.7 0.000 1.58
S1 H → L 96.4 0.688 2.78
T2 H − 3→ L 19.2 0.000 2.84

H − 1→ L 13.6
H → L+ 1 55.9
H → L+ 2 7.9

T3 H − 4→ L 56.2 0.000 3.30
H → L+ 4 36.6

Table S2: Electronic structure of TBPe at the geometry of minimum energy in the T1 and T2 states. All
energies are given with respect to the energy of the optimised ground state. (H: HOMO, L: LUMO)
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Figure S3: Strength of the EET and the Förster couplings between Au-Cz and TBRb molecules as a
function of the relative orientation (θx, θy, θz) for RDA = 24.2 Å.
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S0 minimum
State Excitation Weight (%) Osc. Str. Energy (eV)
T1 H → L 95.4 0.000 1.30
S1 H → L 95.9 0.304 2.37
T2 H − 1→ L 44.9 0.000 2.57

H → L+ 2 26.2
H − 3→ L 15.5
H → L+ 6 5.1

T3 H → L+ 1 71.2 0.000 2.98
H − 4→ L 15.3
H − 2→ L 8.9

S1 minimum
State Excitation Weight (%) Osc. Str. Energy (eV)
S0 - - - 0.20
T1 H → L 96.2 0.000 1.07
S1 H → L 96.2 0.359 2.16
T2 H − 1→ L 58.1 0.000 2.48

H → L+ 2 24.7
H − 3→ L 6.9

T3 H → L+ 1 90.1 0.000 3.00
H − 4→ L 5.3

Table S3: Electronic structure of TBRb at the geometry of minimum energy in the S0 and S1 states. All
energies are given with respect to the energy of the optimised ground state (H: HOMO, L: LUMO).
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Figure S4: Electronic density differences between excited states and the ground state with Au-Cz in
the perpendicular geometry and TBRb for an intermolecular distance of ∼24.2 Å and a random relative
orientation (blue: increase, red: decrease). The singlet and triplet states shown are those of the whole
system.
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S2 Model Hamiltonian

The Au-Cz Hamiltonian has been published elsewhere1,2. The vibronic part of the TBPe Hamiltonian
is written within the linear-vibronic coupling (VLC) approach3 in the diabatic picture as a function of the
mass-frequency weighted normal modes Q as:

Ĥ
vib

TBPe
(Q) = T̂N (Q) + Ŵ (Q), (1)

where T̂N is the (diagonal) kinetic energy operator for the nuclei, given by:

T̂N (Q) = −1

2

3N∑
α=1

ωα
∂2

∂Q2
α

, (2)

ωα being the frequency of the mass-frequency weighted normal mode Qα, and N the total number of
atoms in the TBPe molecule. To calculate the vibronic couplings, it is convenient to expand the electronic
diabatic Hamiltonian Ŵ (Q) around the equilibrium geometry of the ground state Q0, assuming that the
matrix elements are slowly varying functions of Q:

Ŵ − V01 = Ŵ (0) + Ŵ (1) + Ŵ (2) + · · · , (3)

where V0(Q) is the ground state potential energy surface:

V0(Q) =
1

2

3N∑
α=1

ωαQ
2
α. (4)

In the LVC approach, the expansion is restricted to the first order, and the matrix elements become:

Ŵ
(0)
ij = Ei(Q0)δij (5)

Ŵ
(1)
ij = V0(Q) +

3N∑
α=1

(
∂Ŵij

∂Qα

)
Q0

·Qα, (6)

where Ei are the vertical excitation energy of state i at Q0. The vibronic coupling constants represent
the Q-dependent changes of the Hamiltonian due to the excitation. In this framework, we define the
intrastate couplings as:

κ(i)α =

(
∂Ŵii

∂Qα

)
Q0

, (7)

and the interstate couplings as:

λ(i,j)α =

(
∂Ŵij

∂Qα

)
Q0

. (8)

The on-diagonal elements Ŵ (1)
ii , also called “tuning modes”, are responsible for structural reorganization

within an excited-state potential compared to the ground state, whereas the off-diagonal elements Ŵ (1)
ij ,

also called “coupling modes”, are the nonadiabatic couplings responsible for transferring wavepacket
population between different excited states3,4.

Beside the SA
1 , TA

1 and TA
2 states of Au-Cz, we include the SE

1 and TE
1 states of TBPe in the Hamil-

tonian, giving only non-zero intrastate couplings. By construction, the adiabatic and diabatic states are
identical at Q0. The intrastate couplings are then given by:

κ(i)α =

(
∂Vi
∂Qα

)
Q0

, (9)
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α ωα κα (SE
1 ) κα (TE

1 )
191 1634.0 133.8 181.6
160 1437.7 130.2 172.8
141 1333.7 58.7 85.6
193 1661.7 54.0 76.6

Table S4: Intrastate couplings κα of TBPe for the SE
1 and TE

1 states (in meV) incorporated in the quantum
dynamics, and the frequencies of the corresponding mass-frequency weighted normal modes (in cm−1).
The κα are calculated from Eq. (S10).

where Vi is the potential of the adiabatic state i. From a practical point of view, the intrastate couplings
are calculating through the energy gradient at Q0 by:

κα =

√
~
ωα

3N∑
i=1

1
√
mi

(
∂qα
∂ζi

)
Q0

(
∂V

∂xi

)
Q0

, (10)

where qα is the normal mode α, ζi the mass-weighted Cartesian coordinates, xi the Cartesian coordi-
nates, and mi the mass of the atom displaced by the quantity xi. Here we include the 4 modes having
the strongest couplings, which are given in table S4. Finally, we can rewrite the diagonal terms of the
electronic Hamiltonian as:

Ŵii = Ei(Q0) +
3N∑
α=1

(
1

2
ωαQ

2
α + κ(i)α Qα

)
. (11)

The EET coupling as a function of the torsional angle ϕ shown in Fig. 3.c is fitted using λ(ϕ) = b ·
cos (ϕ− c) where we obtained b =1.47416×10−3 eV and c =1.60478 rad. The sine evolution of the
coupling as a function of the torsion angle ϕ is similar to the interstate vibronic couplings of the Au-Cz
molecule1,2. Finally, the spin-orbit interaction between SE1 and TE1 is calculated in the same way as in
Ref.1,2.

S3 Kinetic model

The kinetics of the population of SA
1 , SE

1 , and TA
1 are described by:

dSA
1 (t)

dt
= − (kISC + kEET) · SA

1 (t) + krISC · TA
1 (t) + krEET · SE

1 (t)

dTA
1 (t)

dt
= −krISC · TA

1 (t) + kISC · SA
1 (t) (12)

dSE
1 (t)

dt
= −krEET · SE

1 (t) + kEET · SA
1 (t),

where kISC is the ISC rate constant from SA
1 to TA

1 , krISC the rISC rate constant from TA
1 to SA

1 , kEET the
EET rate constant from SA

1 to SE
1 , and krEET the reverse EET rate constant from SE

1 to SA
1 .

The equation system in the main text can be written in a matrix formulation as:

.
SA
1 (t)

.
TA
1 (t)

.
SE
1 (t)

 =


− (kISC + kEET) krISC krEET

kISC −krISC 0

kEET 0 −krEET

 ·

SA
1 (t)

TA
1 (t)

SE
1 (t)

 , (13)

10



or equivalently: .
P(t) = K̂ ·P(t). (14)

If K̂ is diagonalizable, K̂ = ÛΛ̂Û−1 , (14) has the solution5:

P(t) = eK̂tP(0) = ÛeΛ̂tÛ−1P(0). (15)

For clarity purposes, we use here the following notations: a = kISC, b = krISC, c = kEET, and d = krEET.
The rate matrix becomes:

K̂ =


−(a+ c) b d

a −b 0

c 0 −d

 . (16)

We further define σ1 as the sum of the first order processes, σ2 as the sum of some second order
processes, and θ1 as a first order combination of both:

σ1 = a+ b+ c+ d

σ2 = ad+ bc+ bd (17)

θ1 =
√
σ21 − 4σ2.

Eigenvalues of K̂ are given by:

λ1 = 0 ; λ2 =
− (σ1 + θ1)

2
; λ3 =

− (σ1 − θ1)
2

. (18)

A possible eigenvectors matrix is given by:

Û =


d
c

d+λ2
c

d+λ3
c

ad
bc −

(
1 + d+λ2

c

)
−
(

1 + d+λ3
c

)
1 1 1

 , (19)

and the inverse matrix by:

Û−1 =
1

σ2θ1


bcθ1 bcθ1 bcθ1

−c (σ2 + bλ3) −bcλ3 d
[
σ2 + (a+ b)λ3

]
c (σ2 + bλ2) bcλ2 −d

[
σ2 + (a+ b)λ2

]

 . (20)

The exponential matrix is given by:

eΛ̂t =


1 0 0

0 eλ2t 0

0 0 eλ3t

 . (21)
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The rate equations for an the initial conditions P(0) = (n, 1− n, 0) is given by:

SA
1 (t) = γ1 +

[(
2(b+ nd)− (n+ γ1)σ1

)sinh
(
θ1t
2

)
θ1

+ (n− γ1) cosh

(
θ1t

2

)]
e−σ1t/2

TA
1 (t) = γ2 +

[(
2(na− (1− n)b) + (1− n− γ2)σ1

)sinh
(
θ1t
2

)
θ1

+ (1− n− γ2) cosh

(
θ1t

2

)]
e−σ1t/2

SE
1 (t) = γ3 +

[(
2nc− γ3σ1

)sinh
(
θ1t
2

)
θ1

− γ3 cosh

(
θ1t

2

)]
e−σ1t/2, (22)

where γ1 = bd
σ2

, γ2 = ad
σ2

, γ3 = bc
σ2

.

S4 Excitation Energy Transfer

Excitation energy transfer (EET) describes the non-radiative exchange of electronic (excitonic) energy
from one excited donor (D) molecule to another non-excited acceptor (A) molecule:

D∗ + A −→ D + A∗. (23)

We are interested here in singlet EET (SEET) between the Au-Cz-S1 and the TPBe-S1 states which we
briefly describe. We refer the reader to Ref.6 for the description of triplet EET and electron transfer (ET),
and for more details about singlet EET. Within the first-order approximation in the single excitation theory,
the electronic coupling between D and A promoting SEET is composed of 3 parts7,8:

VSEET = VCoul + Vshort + Vsolv , (24)

where VCoul is the coupling from the long-range Coulomb interaction between the electronic transitions,
Vshort the short-range coupling including the Dexter’s coupling from the indistinguishability of electrons
and the short-range coupling from the molecular orbitals overlap between D and A, and Vsolv the explicit
contribution of the solvent. The (unscreened) Coulomb interaction between the transition densities of the
donor and the acceptor is given by7,9,10:

VCoul =

∫ ∫
drdr′ρtr*

D
(r)

1

|r− r′|
ρtr

A
(r′), (25)

where ρtr
D/A

are the transition densities of the donor and acceptor moities. Transition densities are calcu-
lated from the diagonal part of the transition density matrices (TDM) between the ground state (0) and
the excited states (I) wavefunctions:

γtr
0I(r, r

′) = N

∫
· · ·
∫

dr2 · · · drN (26)

×Ψ0 (r, r2, · · · , rN ) Ψ∗I
(
r′, r2, · · · , rN

)
ρtr
0I(r) = γtr

0I(r, r).

The total integrated transition density being zero by definition, the first nonzero term in a multipole ex-
pansion of the Coulomb coupling is the interaction of the transition dipole moments10. Transition dipole
moments are given by:

µtr
0I =

∫
drrρtr

0I(r), (27)
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and are pointing toward the positive part of the transition density.
Hsu et al. have developed a first-order perturbative expression within a TDDFT framework to describe

the short-range coupling which is expressed as the sum of two terms:

Vshort = Vxc + Vovlp , (28)

namely, an exchange correlation term and an overlap term, given by9:

Vxc =

∫ ∫
drdr′ρtr*

D
(r)gxc(r, r;ω0)ρ

tr
A
(r′) (29)

Vovlp = −ω0

∫
drρtr*

D
(r)ρtr

A
(r),

where gxc is the exchange-correlation kernel of the selected DFT functional, and ω0 the average reso-
nance transition energy of D and A. Finally, within the framework of polarizable continuum models (PCM)
we use here, the solvent contribution can be expressed as10,11:

Vsolv =
∑
k

∫
drρtr*

D
(r)

1

|r− sk|
q

PCM

k

(
ρtr

A
(r)
)
, (30)

which represents the interaction between the transition localized at the donor site and the PCM surface
charges q

PCM
induced by the transition localized at A, and where it has been assumed that only the

electronic component of the solvent polarization is activated in the process.

S5 Fragment energy difference method

The electronic coupling in a two-state representation will be given by the off-diagonal Hamiltonian ele-
ment of the diabatic states12:

V = 〈Ψi| Ĥ |Ψf 〉 , (31)

where Ψi and Ψf are the diabatic wave functions for the initial and final states. To construct the diabatic
states, we have used the fragment energy difference (FED) method, as implemented in the QCHEM pack-
age13. In this approach, the diabatic states as defined as the linear combination of the D/A eigenstates
that maximizes the degree of “exciton localization” through the definition of the “excitation difference”
operator defined as:

∆x =

(
∆x11 ∆x12
∆x12 ∆x22

)
, (32)

with matrix elements:
∆xmn =

∫
r∈D

ρex
mn(r)dr−

∫
r∈A

ρex
mn(r)dr, (33)

where ρex
mn is the “excitation density”, defined as the sum of attachment (electron) and detachment (hole)

densities for the transition |m〉 −→ |n〉 (see appendix E). The excitation-localized states are thus the
states that diagonalize the FED matrix7:

U−1
(

∆x11 ∆x21
∆x12 ∆x22

)
U =

(
∆xi 0

0 ∆xf

)
, (34)

with the unitary transformation matrix:

U =

(
cos θ sin θ

− sin θ cos θ

)
, (35)

13



where the transformation angle θ satisfies:

tan 2θ =
∆x12

∆x11 −∆x22
, (36)

which allows to write the FED coupling as7:

VFED =
(E2 − E1) |∆x12|√

(∆x11 −∆x22)
2 − 4 (∆x12)

2
, (37)

where E1 and E2 are the energies of the starting adiabatic states. The FED approach allows then to
estimate the EET coupling given by Eq. (24).

S6 Attachment/detachment densities

In the framework of Kohn-Sham TDDFT, transition density matrix for the transition |0〉 −→ |n〉 is given as
a superposition of the TDMs associated with individual single-particle transitions (i −→ a)14:

γtr
0n(r, r′) =

∑
i,a

[
φi(r

′)φ∗a(r)Xia(Ωn) (38)

+ φ∗i (r)φa(r
′)Yia(Ωn)

]
,

where Xia and Yia are the eigenvectors of the Casida equation, Ωn the excitation energy, and φi the KS
orbitals. To calculate the attachment and detachment densities for the transition |m〉 −→ |n〉, a density
difference operator is defined as15:

∆ = γtr
0m − γtr

0n, (39)

whose eigenvectors U, called natural transition orbitals, are given by:

U†∆U = δ, (40)

with the eigenvalues δp interpreted as “occupation numbers”. In an electronic transition which does not
involve ionization or electron attachment, the sum of the occupations number will be zero. The detach-
ment (hole) density is defined as the sum of all natural transition orbitals of the difference density with
negative occupation numbers weighted by the absolute value of their occupations, and the attachment
(electron) density is similarly defined from the positive occupation numbers. If we define the diagonal
matrices d and a with elements:

dp = −min(δp, 0) (41)

ap = max(δp, 0),

the detachment density D and the attachment density A will be calculated from:

D = UdU† (42)

A = UaU†.

Finally, the difference matrix can be recalculated from:

∆ = A−D. (43)

See ref.15 for a detailed discussion about attachment and detachment densities.
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S7 Förster theory

In the Förster theory, developed by Theodor Förster in the ∼1940s16–18, the electronic coupling given
by Eq. (24) is approximated by VCoul only, thus neglecting the short-range interactions, screened by an
environmental factor determined by the inverse of the squared refractive index10 (1/n2). Moreover, the
Coulomb contribution is approximated by the transition dipole−transition dipole interaction. The Förster
coupling is then given by:

VF =
Vdd
n2

=
κ
∣∣µ

D

∣∣ ∣∣µ
A

∣∣
4πε0n2R3

DA

, (44)

where RDA is the distance between D and A, µ
D/A

are the transition dipole moments, and κ the orientation
factor given by:

κ = µ̂
D
· µ̂

A
− 3

(
µ̂

D
· R̂DA

)(
µ̂

A
· R̂DA

)
, (45)

In the weak coupling limit, as considered in the Förster theory, the rate constant is written with the
Fermi golden rule (FGR):

kF =
2π

~
|VF |

2 J, (46)

where J is the Franck-Condon Weighted Density of States (FCWD) which ensure energy conservation,
and which is written as the normalized overlap between the donor emission and acceptor absorption
spectra to ensures the resonance condition during EET. By defining the Förster radius RF as the distance
at which the energy transfer efficiency is 50%, and τD as the fluorescence lifetime of the donor in the
absence of the acceptor, it is possible to show that the Förster rate constant can be rewritten19:

kF =

(
RF

RDA

)6 1

τD
, (47)

which we have used to fit the data from quantum dynamics to estimate the Förster radius.
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[19] T. Főrster, Discussions of the Faraday Society, 1959, 27, 7–17.

16


