Supporting Information

Charge transport properties of co-evaporated organic-inorganic thin film

charge transfer complexes: effects of intermolecular interactions

Dong Shen,^a Yan Wu,^a Ming-Fai Lo,*^a and Chun-Sing Lee*^a

^aCenter of Super-Diamond and Advanced Films (COSDAF) and Department of Chemistry, City University of Hong Kong, Hong Kong SAR, P. R. China.

E-mail: mingflo@cityu.edu.hk; apcslee@cityu.edu.hk

Fig. S1 AFM images of MoO₃:6T (left) and pure 6T (right) films

AFM images of the MoO_3 :6T and pristine 6T films are shown in Fig. S1. Obviously, the surface of MoO_3 :6T is smoother than 6T, with root mean square (Rms) roughness of ~3 nm and 5 nm, respectively. No observable pinholes are shown in their surface morphologies.

Fig. S2 XRD patterns of the as-deposited MoO₃:6T, rubbed MoO₃:6T, MoO₃ and 6T deposited on ITO substrates

XRD data of the as-deposited MoO₃:6T, rubbed MoO₃:6T, MoO₃ and 6T deposited on ITO substrates are shown in Fig. S2. All these films show the XRD peaks of the ITO substrate. No other detectable peaks from the 6T, MoO₃ or the CTC are observed, demonstrating the amorphous nature of these vacuum-deposited films.