Supporting Information

Multiscale understanding of electric polarization in poly(vinylidene fluoride)based ferroelectric polymers

Nan Meng^{1,2}, Xintong Ren², Xiaojing Zhu², Jiyue Wu², Bin Yang³*, Feng Gao⁴, Han Zhang², Yaozu Liao¹, Emiliano Bilotti², Michael J. Reece², Haixue Yan²*

¹State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, PR China

²School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London E1 4NS, UK

³Department of Computer Science, Electronic and Electrical Engineering, Faculty of Science and Engineering, University of Chester, Chester, CH2 4NU, UK

⁴State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, NPU-QMUL Joint Research Institute of Advanced Materials and Structure, Northwestern Polytechnical University, Xi'an, 710072, P.R. China

Email: b.yang@chester.ac.uk; h.x.yan@qmul.ac.uk

Figure S1. FTIR of PVDF, PVDF-TrFE and 50/50 blended films processed via melt-extrusion (Ex) and hot-compression (HP).

The hot pressed and extruded PVDF films show obvious and strong characteristic bands of α -phase, 612 cm⁻¹, 762 cm⁻¹ and 974 cm⁻¹ and weak appearance of β -characteristic bands, 840 cm⁻¹ and 1283 cm⁻¹, which suggests that the hot pressed and extruded PVDF films mainly crystallized into α -phase. The hot pressed and extruded PVDF-TrFE films contain pure β -phase, concluded from the strong β -characteristic bands (840 cm⁻¹ and 1283 cm⁻¹) and the absence of α -characteristic bands (612 cm⁻¹, 762 cm⁻¹ and 974 cm⁻¹). The blends show mixed bands of α - and β -phase.

FTIR can also be used to quantitatively determine the volume fraction of β -phase (*F*(β)) using the below equation¹:

$$F(\beta) = \frac{A_{\beta}}{\frac{K_{\beta}}{K_{\alpha}} \times A_{\alpha} + A_{\beta}} \times 100\%$$
(1)

where A_{α} and A_{β} are the absorbance of α - and β -characteristic bands, 762 cm⁻¹ and 840 cm⁻¹, respectively. K_{α} and K_{β} are the absorption coefficients of bands at 762 cm⁻¹ and 840 cm⁻¹, which are 6.1×10^4 cm²/mol and 7.7×10^4 cm²/mol, respectively. The calculated values of *F*(β) are summarized in Table S1, which also includes the DSC characteristic parameters.

Table S1. The content of β -phase ($F(\beta)$) and thermal characteristics of melting temperature ($T_{\rm m}$), Curie transition temperature ($T_{\rm c}$), fusion enthalpy ($\Delta H_{\rm f}$) and degree of crystallinity (η) for pure PVDF, PVDF-TrFE and their blends prepared using melt-extrusion (Ex) and hot compression (HP).

	HP	Ex	HP	Ex	HP blends	Ex
	PVDF	PVDF	PVDF-	PVDF-		blends
			TrFE	TrFE		
$F(\beta)$ (vol.)	< 10%	< 10%	100%	100%	50-60%	65-70%
$T_{\rm m}$ (°C)	157±2	157±3	152±1	150±1	158±1 (PVDF)	158±2 _(PVDF)
					148±1 (PVDF-	148±2 _{(PVDF-}
					TrFE)	TrFE)
$T_{\rm c}$ (°C)	$> T_{\rm m}$	$> T_{\rm m}$	115±3	122±2	119±3	128±2
$\Delta H_{ m f}$	41±2	44±3	25±2	28±2	$28\pm 2_{(PVDF)}$	$30\pm 2_{(PVDF)}$
					$21 \pm 1_{(PVDF-TrFE)}$	$22 \pm 1_{(PVDF-TrFE)}$
*\eta	39±2%	42±3%	65±6%	74±4%	27±2% (PVDF)	29±2% (PVDF)
					55±3% (PVDF-	58±3% (PVDF-
					TrFE)	TrFE)

*The degree of crystallinity was achieved using the experimental values of $\Delta H_{\rm f}$ divided by the values of fusion enthalpy for 100% crystalline materials ($\Delta H_{\rm f}^{\circ}$), which are 104.6 J/g and 38 J/g for PVDF and PVDF-TrFE, respectively.²

Figure S2. The temperature dependence of dielectric permittivity of the (a) hot pressed and (b) extruded PVDF-TrFE films.

Figure S3. Surface SEM morphology images of samples processed using hot-compression (HP) and melt-extrusion (Ex) with the inset images of 2D-XRD ring patterns taken with an incident beam normal to the film surface: (a) HP PVDF; (b) Ex PVDF; (c) HP PVDF-TrFE; (d) Ex PVDF-TrFE; (e) HP blends and (f) Ex blends. The white arrows in SEM images and 2D-XRD ring patterns denote the direction of extrusion.

Figure S4. The 0° and 90° THz spectroscopy of extruded PVDF, PVDF-TrFE and their blends, which demonstrate that there is no difference in the THz-TDS spectra during the 90° rotation of samples.

Reference

- Jr. R. Gregorio and M. Cestari, *Journal of Polymer Science Part B Polymer Physics*, 1994, **32**, 859-870.
- P. Martins, A. C. Lopes and S. Lanceros-Mendez, *Progress in Polymer Science*, 2014, 39, 683-706.