Supporting Information

A robust and multifunctional calcium coordination polymer as selective fluorescent sensor for acetone and iron (+3) and as tunable proton conductor

Zhao-Feng Wu,^{*a,b,#*} Zhi-Hua Fu,^{*b,#*} Ever Velasco,^{*a*} Kai Xing,^{*c*} Hao Wang,^{*d*} Guo-Dong Zou,^{*e*} Xiao-Ying Huang ^{*b,**} and Jing Li^{*a,**}

^a Department of Chemistry and Chemical Biology, 123 Bevier Rd. Piscataway, NJ 08854, United States

^b State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, the Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P.R. China

^c Harbin Institute of Technology, No.92 Xidazhi Street Nangang District, Harbin, 150006, P.R. China

^d Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic, Shenzhen, Guangdong 518055, P. R. China

^e School of Chemistry & Chemical Engineering, Xinyang Normal University, Xinyang, Henan 464000, P.R. China

[#] The authors contributed equally.

E-mail: xyhuang@fjirsm.ac.cn; jingli@rutgers.edu.

Figure S1. Crystal images of compound 1.

Figure S2. Experimental and simulated PXRD patterns of compound 1.

Figure S3. The cage structure in 1. The $[(CH_3)_2NH_2]^+$ cations are shown in space filling mode.

D-HA	d(D-H) /Å	d(HA) /Å	d(DA)/Å	<(DHA)/°
O(7)-H(7)O(5)#1	1.00(3)	1.52(3)	2.518(2)	176(3)
O(7)-H(7)O(6)#1	1.00(3)	2.62(3)	3.216(2)	118(2)
O(9)-H(9A)O(2)#2	0.84	1.82	2.634(2)	162.7
N(1)-H(1C)O(3)#3	0.91(3)	2.62(3)	3.230(2)	124(2)
N(1)-H(1C)O(4)#3	0.91(3)	1.88(3)	2.784(2)	172(2)
N(1)-H(1B)O(1)	0.95(3)	2.56(3)	3.151(2)	121(2)
N(1)-H(1B)O(2)	0.95(3)	1.74(3)	2.687(2)	179(3)
C(38)-H(38C)O(6)#4	0.98	2.56	3.379(3)	140.7

Table S1. Hydrogen bonds in compound 1.

Symmetry transformations used to generate equivalent atoms:

*#*1 -*x*+3/2, -*y*, *z*-1/2; *#*2 -*x*+1, -*y*+1, -*z*+1; *#*3 *x*, -*y*+3/2, *z*-1/2; *#*4 *x*-1/2, *y*+1, -*z*+3/2.

Figure S4. The H-bonding network (highlighted in blue dotted line) in **1** viewed along [100] direction. The H-bonding network was formed between H atoms in terminal water, dimethylamine cation and oxygen atom of carboxylic oxygen atoms.

Figure S5. Thermogravimetric curve for compound 1.

Figure S6. The fluorescence excitation and emission spectra of 1 (a) and the Me_2tcpbH_4 ligand (b) in the solid state.

Figure S7. The FL spectra of powdered sample of 1 dispersed in different solvents.

Figure S8. The *K*sv plot of 1 for acetone.

Figure S9. Fluorescence spectra of 1 dispersed in various solutions of 10⁻³ M metal ions.

compounds	Dispersed	Quenching to almost no	LOD	Ref.	
[(CH3)2NH2][Ca(Me2tcpbH)(H2O)]	H ₂ O	2.0%	3.12 mM	This work	
Zn (bpydb)(bimmb) _{0.5}		2.4%	0.07 µM		
Zn2(bpydb)2(bimb)]·[Zn(bpydb)(bimb)	DMA	7.5%	0.18 µM	1	
[Eu ₂ (BPS) ₃ (H ₂ O) ₄]·18H ₂ O	H ₂ O	0.001 M	none	2	
[Eu ₅ (DBA) ₃] (1)	H ₂ O	none	1.24 μM	3.	
[Cd(pta)]·H ₂ O	H ₂ O	none	825 ppm	4	
Tb(DBB)(H ₂ O) ₂	H ₂ O	0.007 M	none	5	
[Cd _{1.5} (DBPT)(DiPyDz)(H ₂ O)]·3.5H ₂ O	H ₂ O	4%	0.0013 vol%	6	
$[Cd_4(Ccbp)_3(dpe)_4\cdot 4H_2O]\cdot (ClO_4)_5\cdot 4H_2O$	H ₂ O	195.1 μM	none	7	
Eu(BDC) _{1.5} (H ₂ O) ₂		0.3%	0.075 10/	8	
Eu(BTC)(H ₂ O)·1.5H ₂ O	methanol	0.45%	0.075 V01%		
[Me ₂ NH ₂] ₂ [(Ln) ₂ (ofdp) ₂ (DMF)(H ₂ O)]·7H ₂ O·DMF	i-propane	8%	none	9	
Tb(HL)(C ₂ H ₅ OH) ₂	DMF	5%	none	10	
$[Cd_4(L)_4(NO_3)_3(H_2O)_3]\cdot 8DMF\cdot H_2O\cdot NO_3$	DMF	150 μM	none	11	
$[Tb_4(\mu_6-L)_2(\mu-HCOO)(\mu_3-OH)_3(\mu_3-O)(DMF)_2(H_2O)_4]$	DMF	100 %	none	12	
$[Tb(L_1)(L_2)_{0.5}(NO_3)(DMF)] \cdot DMF$	H ₂ O	18%	none	13	
Eu(BTB)(H ₂ O) ₂ ·solvent	ethanol	6%	none	14	
[Eu(bpda) _{1.5}].H ₂ O	H ₂ O	0.35%	none	15	
$[Ln_2(BPDC)(BDC)_2(H_2O)_2]_n$ (Ln = Eu (1), Tb (2),	H ₂ O	9.09, 8.26 and 11.11%	none	16	
Eu _{0.2} Tb _{1.8} (1a))		for 1 , 2 , and 1a ,			
Yb _{0.10} Gd _{0.90} L	2-propanol	2.5%	none	17	
$[Cd_3(L)(H_2O)_2(DMF)_2] \cdot 5DMF$	1-propanol	1.0%	none	18	
Yb(BPT)(H ₂ O)·(DMF) _{1.5}	1-propanol	5%	none	19	
Eu(BTC)	1-propanol	3.75%	none	20	

Table S2. The reported CPs FL sensors for acetone.

References:

- 1. B. Zhu, Z. Zong, X. Zhang, D. Zhang, L. Cui, C. Bi and Y. Fan, Appl. Organomet. Chem., 2020, 34, e5518.
- 2. J. Wang, L.-F. Xu, J. Wu, G.-Q. You, R. Cai and C.-L. Wu, J. Coord. Chem., 2020, 73, 877.
- 3. L. Gao, C. Jiao, H. Chai, Y. Ren, G. Zhang, H. Yu and L. Tang, J. Solid State Chem., 2020, 284, 121199.
- 4. F. An, C. Zhang, L. Duan, X. Liu, Z. Wang, X. Jin and W. Song, New J. Chem., 2019, 43, 4800.
- 5. H. Chai, Y. Ren, H. He, Z. Wang, Y. Zhang and L. Gao, J. Solid State Chem., 2019, 271, 162.
- 6. T. Gao, B.-X. Dong, Y. Sun, W.-L. Liu and Y.-L. Teng, J. Mater. Sci., 2019, 54, 10644.
- 7. Y. Ma, H. Tang, X. Dong, K. Wang, M. Liu and Y. Wang, Inorg. Chem. Commun., 2019, 105, 13.
- 8. X. Zhang, X. Kang, W. Cui, Q. Zhang, Z. Zheng and X. Cui, New J. Chem., 2019, 43, 8363.
- 9. Y. Yang, L. Chen, F. Jiang, M. Wu, J. Pang, X. Wan and M. Hong, CrystEngComm, 2019, 21, 321.
- 10. X. Han, J. Yang, Y.-Y. Liu and J.-F. Ma, Dyes and Pigments, 2019, 160, 492.
- 11. S. Kumar, A. Arora, A. Kumar and K. Tomar, Inorg. Chem. Commun., 2018, 96, 16.
- 12. Q. Zhang, J. Wang, A. M. Kirillov, W. Dou, C. Xu, C. Xu, L. Yang, R. Fang and W. Liu, ACS Appl. Mater. Inter.,

2018, 10, 23976.

- 13. N. Goel and N. Kumar, RSC Adv., 2018, 8, 10746.
- 14. M. Zhao, Z.-Q. Yao, Y.-L. Xu, Z. Chang and X.-H. Bu, RSC Adv., 2017, 7, 2258.
- 15. J. Wang, J. Wang, Y. Li, M. Jiang, L. Zhang and P. Wu, New J. Chem., 2016, 40, 8600.
- 16. J.-M. Zhou, W. Shi, N. Xu and P. Cheng, Inorg. Chem., 2013, 52, 8082.
- 17. S. Dang, X. Min, W. Yang, F.-Y. Yi, H. You and Z.-M. Sun, Chem. Eur. J., 2013, 19, 17172.
- 18. F.-Y. Yi, W. Yang and Z.-M. Sun, J. Mater. Chem., 2012, 22, 23201.
- Z. Guo, H. Xu, S. Su, J. Cai, S. Dang, S. Xiang, G. Qian, H. Zhang, M. O'Keeffe and B. Chen, *Chem. Commun.*, 2011, 47, 5551.
- 20. B. Chen, Y. Yang, F. Zapata, G. Lin, G. Qian and E. B. Lobkovsky, Adv. Mater., 2007, 19, 1693.

Compounds	Dispersed solvents	$K_{\rm sv}({ m M}^{-})$	LOD	Ref.
[(CH3)2NH2][Ca(Me2tcpbH)(H2O)]	H ₂ O	1.18×10^5	20.85 μM	This work
[Zn ₂ (tpeb)(bpdc) ₂]	H ₂ O	$1.326 imes 10^4$	0.882 µM	1
Zn(L) ₂	H ₂ O	1.34×10^4	2.24 μM	2
$[Tb(\mu_6-H_2cpboda)(\mu_2-OH_2)_2]\cdot xH_2O]$	H ₂ O	6.50×10^4	0.84 µM	3
[Zn ₂ (L)(TBIP) _{1.5} (OH)]·H ₂ O		$3.19 imes 10^4$	0.20 µM	4
Zn(L)(DBT)	$DMSO+H_2O$	$1.19 imes 10^4$	0.65 µM	
Zn(L) _{0.5} (MIP)	EG+H ₂ O	2.25×10^4	0.54 μM	
[Cd(Hcip)(bpea) _{0.5} (H ₂ O)]	DMF	$4.10 imes 10^4$	3.24 µM	5
[Zn ₂ Na ₂ (TPHC)(4,4-Bipy)(DMF)]·8H ₂ O	DMF	$5.77 imes 10^4$	6.4 μM	6
[Cd _{1.5} (DBPT)(DiPyDz)(H ₂ O)]·3.5H ₂ O	H ₂ O	4.78×10^5	78 ppb	7
[Zn(QDA)] [.] 0.3DMF	methanol	1.12×10^6	0.023 μΜ	8
[Tb(TATAB)(H ₂ O)]·2H ₂ O	H ₂ O	1.25×10^5	0.0221 μM	9
$Zn_2(NO_3)_2(4,4'-bpy)_2(TBA)$	H ₂ O	7.48×10^3	7.18 μM	10
$[Mg_2(APDA)_2(H_2O)_3] \cdot 5DMA \cdot 5H_2O$	DMF	2.06×10^4	152 ppb	11
Eu(L)(H ₂ O)(DMA)	ЦО	2.03×10^4	1.41 μM	12
Tb(L)(H ₂ O)(DMA)	H ₂ O	2.11×10^4	1.01 µM	
$[Eu_2(DMTDC)_3(DEF)_4]\cdot DEF\cdot 6H_2O$	DME	$4.6 imes 10^4$	none	13
$[Tb_2(DMTDC)_3(DEF)_4]$ ·DEF·6H ₂ O	DMF	$4.3 imes 10^4$	none	
$[Cd_2(L)_2(bpe)_2]\cdot 3DMF\cdot 2.5H_2O$	DME	$1.74 imes 10^4$	0.61 µM	14
[Cd(L)(bibp)]·2DMF	DMF	3.39×10^4	1.24 μM	
Al-MIL-53-N ₃	H ₂ O	6.13×10^3	0.03 μΜ	15
[Eu(L)(BPDC) _{0.5} (NO ₃)]·H ₃ O	DME	$5.16 imes 10^4$	none	16
[Tb(L)(BPDC) _{0.5} (NO ₃)]·H ₃ O	DIVIF	$4.3 imes 10^4$	none	
[Zr ₆ O ₄ (OH) ₄ (2,7-CDC) ₆]·19H ₂ O·2DMF	H ₂ O	$5.5 imes 10^3$	0.91 µM	17
[CH ₃ -dpb] ₂ [Mg ₃ (1,4-NDC) ₄ (µ-	CH-CL	0.16×10^{5}	470 μΜ	18
H ₂ O) ₂ (CH ₃ OH)(H ₂ O)]·1.5H ₂ O	CH2CI2			
$[Tb_2(Ccbp)_3\cdot 6H_2O]\cdot 3Cl\cdot 4H_2O$	ethanol	1.143×10^{5}	none	19
[Cd(5-asba)(bimb)	H ₂ O	1.78×10^4	1 ppm	20

Table S3. The reported CPs FL sensors for Fe^{3+} .

References:

- 1. B. B. Rath and J. J. Vittal, Inorg. Chem., 2020, 59, 8818.
- 2. T.-Y. Xu, H.-J. Nie, J.-M. Li and Z.-F. Shi, J. Solid State Chem., 2020, 287, 121342.
- 3. D. Yang, L. Lu, S. Feng and M. Zhu, Dalton Trans., 2020, 49, 7514.
- 4. H. Zhu, L. Fu, D. Liu, Y.-H. Li and G.-Y. Dong, J. Solid State Chem., 2020, 286, 121265.
- 5. Y. e. Yu, Y. Wang, H. Yan, J. Lu, H. Liu, Y. Li, S. Wang, D. Li, J. Dou, L. Yang and Z. Zhou, *Inorg. Chem.*, 2020, **59**, 3828.
- 6. C. Yu, X. Sun, L. Zou, G. Li, L. Zhang and Y. Liu, Inorg. Chem., 2019, 58, 4026.
- 7. T. Gao, B.-X. Dong, Y. Sun, W.-L. Liu and Y.-L. Teng, J. Mat. Sci., 2019, 54, 10644.
- 8. C. Gogoi, M. Yousufuddin and S. Biswas, Dalton Trans., 2019, 48, 1766.
- 9. J.-H. Wei, J.-W. Yi, M.-L. Han, B. Li, S. Liu, Y.-P. Wu, L.-F. Ma and D.-S. Li, *Chem. Asian J.*, 2019, 14, 3694.
- X. Zhang, X. Zhuang, N. Zhang, C. Ge, X. Luo, J. Li, J. Wu, Q. Yang and R. Liu, *CrystEngComm*, 2019, 21, 1948.
- 11. N. Xu, Q. Zhang, B. Hou, Q. Cheng and G. Zhang, Inorg. Chem., 2018, 57, 13330.
- 12. L. Liu, Y. Wang, R. Lin, Z. Yao, Q. Lin, L. Wang, Z. Zhang and S. Xiang, Dalton Trans., 2018, 47, 16190.
- 13. A.-N. Dou, L.-B. Yang, X.-D. Fang, Q. Yin, M.-D. Li, J. Li, M.-Y. Wang, A.-X. Zhu and Q.-Q. Xu, *CrystEngComm*, 2018, **20**, 3609.
- 14. Z. Chen, X. Mi, J. Lu, S. Wang, Y. Li, J. Dou and D. Li, *Dalton Trans.*, 2018, 47, 6240.
- 15. A. Das, S. Banesh, V. Trivedi and S. Biswas, Dalton Trans., 2018, 47, 2690.
- 16. W. Yan, C. Zhang, S. Chen, L. Han and H. Zheng, ACS Appl. Mater. Interfaces, 2017, 9, 1629.
- 17. A. Das and S. Biswas, Sens. Actuator B-Chem., 2017, 250, 121-131.
- 18. Z.-F. Wu, L.-K. Gong and X.-Y. Huang, Inorg. Chem., 2017, 56, 7397.
- 19. K.-M. Wang, L. Du, Y.-L. Ma, J.-S. Zhao, Q. Wang, T. Yan and Q.-H. Zhao, CrystEngComm, 2016, 18, 2690.
- 20. Y.-J. Yang, M.-J. Wang and K.-L. Zhang, J. Mater. Chem. C, 2016, 4, 11404.

Figure S10. Arrhenius plot of the proton conductivity of **1** at 98% RH; least-squares fitting is shown as a solid line.

Figure S11. Experimental, simulated PXRD patterns of compound **1** compared with that of the sample after proton conduction measurement.

Figure S12. The IR spectra of 1 and 1-T.

Figure S13. (a) Nyquist plots for **1-T** at 30 °C under 40 to 98% RH. (b) Proton conductivity (σ) values of **1-T** under different humidity conditions.

Figure S14 (a) Nyquist plots for 1 at 98% RH varied from 30 to 80 °C. (b) σ values of 1 at different temperatures.

Figure S15. Arrhenius plots of the proton conductivity of 1-T at 98% RH; least-squares fitting is shown as a solid line.