Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2020

Supporting Information (SI)

Tailoring the Thermoelectric and Structural Properties of Cu-Sn Based Thiospinel Compounds [$CuM_{1+x}Sn_{1-x}S_4$ (M = Ti, V, Cr, Co)]

Cédric Bourgès,^{1,2} Bhuvanesh Srinivasan,^{*1,3} Bruno Fontaine,⁴ Philipp Sauerschnig,¹ Alizée Minard,³ Jean-François Halet,^{3,4} Yuzuru Miyazaki,² David Berthebaud,³ and Takao Mori^{*1,5}

¹ WPI International Center for Materials Nanoarchitechtonics (WPI-MANA), National Institute for Materials Science (NIMS), Namiki 1-1, Tsukuba, 305-0044, Japan

² Department of Applied Physics, Graduate School of Engineering, Tohoku University, Sendai, 980-8579, Japan

³ CNRS-Saint Gobain-NIMS, UMI 3629, Laboratory for Innovative Key Materials and Structures (LINK),

National Institute for Materials Science (NIMS), Tsukuba, 305-0044, Japan

⁴ Univ. Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR – UMR 6226, F-35000 Rennes, France

⁵ Graduate School of Pure and Applied Sciences, University of Tsukuba, Tennodai 1-1-1, Tsukuba 305-8671, Japan

* Corresponding authors: <u>SRINIVASAN.Bhuvanesh@nims.go.jp</u> (B.S); <u>MORI.Takao@nims.go.jp</u> (T.M)

Figure S1. *Rietveld refinement for the (a)* $CuCrSnS_4$, and (b) $CuCr_{1.1}Sn_{0.9}S_4$ thiospinel compounds.

Figure S2. *Rietveld refinement for the* $CuCo_{0.5}Sn_{1.5}S_4$ *thiospinel compound.*

Figure S3. Rietveld refinement for the (a) $CuTiSnS_4$, and (b) $CuTi_{1.1}Sn_{0.9}S_4$ thiospinel compounds.

Table S1. Atomic coordinates and atomic occupancy of the obtained from Rietveld refinement X-ray powder diffraction patterns ($\lambda_{Cu} = 1.5418 \text{ Å}$) of the $Cu(M;Sn)_2S_4$ (M = Co, Ti and Cr) sample after Spark Plasma Sintering at room temperature *These values have been fixed due to too close Z values of metallic atoms and due to the resolution limit of the XRD Rietveld analysis.

	*Occ. (Cu)	*Biso (Cu)	Occ. _{exp} (M)	Occ. _{theo} (M)	Occ _{exp} (Sn)	Occ _{theo} (Sn)	*Biso (M/Sn)	*Occ . (S)	x position (S)	*Biso (S)
CuCo _{0.5} Sn _{1.5} S ₄	1	0.5	0.17	0.25	0.83	0.75	0.5	_ 1	0.2548	0.5
$CuTi_{0.9}Sn_{1.1}S_4$	1	0.5	0.4	0.45	0.6	0.55	0.5	1	0.2404	0.5
CuTiSnS₄	1	0.5	0.51	0.5	0.49	0.5	0.5	1	0.2441	0.5
CuTi _{1.1} Sn _{0.9} S ₄	1	0.5	0.53	0.55	0.47	0.45	0.5	1	0.2418	0.5
CuCrSnS ₄	1	0.5	0.52	0.5	0.48	0.5	0.5	1	0.2464	0.5
CuCr _{1.1} Sn _{0.9} S ₄	1	0.5	0.57	0.55	0.43	0.45	0.5	1	0.2457	0.5
$CuCr_{1.2}Sn_{0.8}S_4$	1	0.5	0.61	0.6	0.39	0.4	0.5	1	0.2454	0.5

Table S2. Computed carrier concentration and effective mass values at room temperature for $CuM_{1+x}Sn_{1-x}S_4$ (x=0 for M=Ti, Cr, and x=-0.5 for M=Co)^a with $\lambda = 0.5$.

Computed transport properties (based on band structures)	CuCo _{0.5} Sn _{1.5} S ₄	CuTiSnS ₄	CuCrSnS ₄
Carrier concentration, n (cm ⁻³)	1.6 x 10 ²⁰	1.9 x 10 ²⁰	3.3 x 10 ¹⁹
Effective mass, m^* (m_e)	2.17	0.33	3.36

Figure S4. $CuV_{1+x}Sn_{1-x}S_4$ series – (a) XRD patterns, (b) electrical and thermal transport properties at room temperature.

Table S3. Specific Sn-S and M-S distances (Å, M = Co, Ti, Cr, V) of $CuM_{1+x}Sn_{1-x}S_4$ (x = 0 for M = Ti, V, Cr, and x = -0.5 for M = Co) this pinel compounds.

Structural Information	CuCo _{0.5} Sn _{1.5} S ₄	CuTiSnS ₄	CuCrSnS ₄	CuVSnS ₄
	2.583 (a)	2.534 (a)	2.517 (a)	2.535 (a)
Sn S	2.628 (b)	2.555 (b)	2.560 (b)	2.548 (b)
511-5	2.660 (c)	2.578 (c)	2.567 (c)	2.558 (c)
	2.662 (d)	2.609 (d)	2.594 (d)	2.590 (d)
		2.511 (a)	2.440 (a)	2.465 (a)
M-S	2.466 (a, b, d)	2.520 (b)	2.484 (b)	2.480 (b)
(M = Co, Ti, Cr, V)	2.623 (b, d, c)	2.575 (c)	2.495 (c)	2.519 (c)
		2.601 (d)	2.567 (d)	2.537 (d)

Note: Please refer Figure S5 for a, b, c, and d labeling in Table S3.

Figure S5. Distorted octahedral environment of M (M = Co, Ti, Cr, V) and Sn of $CuM_{1+x}Sn_{1-x}S_4$ (x = 0 for M = Ti, V, Cr, and x = -0.5 for M = Co) thiospinel compounds.

Figure S6. Spin-polarized density of states (DOS) of (a) $CuCo_{0.75}Sn_{1.25}S_4$, and (c) $CuCoSnS_4$ hypothetical models.