Supporting Information

1. Crystal structures

Complex	Eu-1	Eu-2	Tb-2	Gd-2
Empirical formul	^a C ₅₆ H ₆₀ N ₁₄ O ₁₄ Cl ₃ I	Eu C ₅₇ H ₆₁ Cl ₃ EuN ₁₅ C	$D_{13} C_{57}H_{61}Cl_3N_{15}O_{13}$	Tb C ₅₇ H ₆₁ Cl ₃ GdN ₁₅ O ₁₃
Formula weight	1411.49	1422.51	1428.47	1427.80
Temperature/K	293(2)	150.15	293(2)	150.00(10)
Crystal system	orthorhombic	orthorhombic	orthorhombic	orthorhombic
Space group	$P2_{1}2_{1}2_{1}$	$P2_{1}2_{1}2_{1}$	$P2_{1}2_{1}2_{1}$	$P2_{1}2_{1}2_{1}$
a/Å	12.7639(5)	12.7697(5)	12.7866(3)	12.7306(7)
b/Å	21.0583(8)	20.9395(8)	21.0103(5)	20.959(2)
c/Å	22.859(3)	22.6567(12)	22.6401(6)	22.596(3)
α/°	90	90	90	90
β/°	90	90	90	90
γ/°	90	90	90	90
Volume/Å ³	6144.1(8)	6058.2(5)	6082.3(2)	6029.1(11)
Z	4	4	4	4
$\rho_{calc}g/cm^3$	1.526	1.560	1.560	1.573
μ/mm^{-1}	9.145	1.244	1.371	8.985
F(000)	2880.0	2904.0	2908.0	2908.0
Reflections	11327	22808	13436	15018
collected Independent reflections	8494	10479	9416	9726
Data/restraints /parameters	8494/297/802	10479/80/828	9416/1382/817	9726/844/811
Goof	1.111	1.040	1.027	1.020
Final R indexes [I>=2σ (I)]	$R_1 = 0.1488,$ w $R_2 = 0.3210$	$R_1 = 0.0451,$ $wR_2 = 0.1012$	$R_1 = 0.0923,$ $wR_2 = 0.2346$	$R_1 = 0.0784,$ w $R_2 = 0.1898$
Final R indexes [all data]	$R_1 = 0.2317,$ $wR_2 = 0.3790$	$R_1 = 0.0573,$ $wR_2 = 0.1089$	$R_1 = 0.1087,$ $wR_2 = 0.2534$	R ₁ =0.0954, wR ₂ =0.2145

Table S1. Crystal data and structure refinement for Eu-1, Eu-2, Tb-2 and Gd-2.

Eu-1					
Eu1	N2	2.460(11)	Eu1	N11	2.617(10)
Eu1	N3	2.702(10)	Eu1	N13	2.497(12)
Eu1	N4	2.457(8)	Eu1	N8	2.501(12)
Eu1	N6	2.540(10)	Eu1	N10	2.706(10)
Eu-2					
Eu1	N1	2.488(7)	Eu1	N10	2.478(7)
Eu1	N3	2.470(7)	Eu1	N12	2.492(7)
Eu1	N5	2.495(7)	Eu1	N14	2.675(7)
Eu1	N7	2.694(7)	Eu1	N8	2.477(7)
Tb-2					
Tb1	N1	2.446(13)	Tb1	N8	2.445(13)
Tb1	N3	2.457(13)	Tb1	N10	2.439(14)
Tb1	N4	2.468(13)	Tb1	N12	2.470(13)
Tb1	N6	2.675(13)	Tb1	N14	2.666(13)
Gd-2					
Gd1	N1	2.468(13)	Gd1	N8	2.466(12)
Gd1	N3	2.665(12)	Gd1	N10	2.702(12)
Gd1	N4	2.445(11)	Gd1	N11	2.480(13)
Gd1	N6	2.494(12)	Gd1	N13	2.479(12)

Table S2. Selected Bond Lengths (Å) of Eu-1, Eu-2, Tb-2 and Gd-2.

Scheme S1. Synthetic route of TMeNTB ligand.

Fig. S1 The ¹H NMR spectra of TMeNTB ligand.

Fig. S2 Structure of the cationic unit in Eu-1 (a) and Eu-2 (b). Eu red, N blue, C gray, the teal dash lines showing the π - π interactions between the BIms, the light yellow box showing the distorted cubic coordination geometry around the Eu(III) ion.

Fig. S3 The structure of Eu-1 viewed along a axis (a) and b axis (b). The structure of Eu-2 viewed from a axis (c) and b axis (d). Eu red, N blue, C gray, O orange, Cl green, and the cyan polyhedron showing the cavities between coordination units.

(c)

(a)

Fig. S4 PXRD patterns of the Ln-1 and Ln-2 series compared with the simulated.

Fig. S5 TG curves of Eu-1 and Eu-2.

Fig. S6 Solid state UV-visible absorption spectra of TMeNTB, Ln-1 and Ln-2 series.

Fig. S7 (a) The excitation spectra of Gd-1 and Gd-2 ($\lambda_{em} = 380 \text{ or } 530 \text{ nm}$); (b) The emission spectra of Gd-1 and Gd-2 ($\lambda_{ex} = 320 \text{ nm}$); (c) The emission spectra of Gd-1 and Gd-2 ($\lambda_{ex} = 370 \text{ nm}$); (d) The lifetime decay curves of Gd-1 and Gd-2 ($\lambda_{ex} = 370 \text{ nm}$, $\lambda_{em} = 530 \text{ nm}$).

Fig. S8 Device diagram of sample response to methanol vapor.

Fig. S9 The fluorescent excitation spectra of (a) Eu-1, and (b) Tb-1 in the atmosphere of MeOH/ N_2 with time at room temperature.

Fig. S10 The fluorescent excitation and emission spectra of (a) Eu-1, (b) Tb-1, (c) Eu-2, and (d) Tb-2 microcrystalline samples before and after adding one drop of MeOH liquid.

Fig. S11 The decay curves of Ln-1 and Ln-2 before and after treated with methanol vapor or liquid.

Fig. S12 The X-ray powder diffraction (PXRD) patterns of (a) Eu-1, and (b) Tb-1 under MeOH/ N_2 steam cycles (the number of 1-8 or 1-3 means the cycle number).

Fig. S13 The PXRD patterns of (a) Eu-2, and (b) Tb-2 under MeOH/N₂ steam cycle.

Fig. S14 (a) The emission spectra and excitation spectra of Gd-1 at r.t. in air and 77 K; (b) The emission spectra of Gd-1 excited by different excitation wavelength.

Fig. S15 The decay curves of Gd-1 before and after treated with methanol vapor.

Fig. S16 The emission spectra of (a) Eu-2, (b) Tb-1 and (c) Tb-2 film before and after treated with MeOH vapor for 30 min.

Fig. S17 The emission spectra of Eu-1 before and after treated with (a) H_2O , (b) Et_2O , (c) EtOH, (d) CH_3Cl , (e) DCM, (f) EA, (g) *n*-butyl alcohol, (h) MeSH, (i) propane-1,3-dithiol vapors.

Fig. S18 The PXRD of Eu-1 before and after treated with H₂O, Et₂O, EtOH, CH₃Cl, DCM, EA, n-butyl alcohol, MeSH, propane-1,3-dithiol vapors.

Sample	$\lambda_{ex}(nm)$	PLQY (%)
Eu-1	370	10
Eu-2	370	28
Tb-1	280	72
Tb-2	280	87
Gd-1	370	4.3
Gd-2	370	5.3

Table S3 The absolute photoluminescence quantum yield of Ln-1 and Ln-2 (Ln=Eu, Tb, Gd).

Table S4 The lifetime of Gd-1 in the atmosphere of MeOH at different times.

Sample	530 nm	Lifetime (µs)	Rel. (%)
	τl	3.80	12.9
Gd-1@MeOH-0 min	τ2	332.38	87.1
	τ	336.18	
	τ1	16.50	15.94
Gd-1@MeOH-15 min	τ2	512.92	84.06
	τ	529.41	
	τ1	99.70	46.53
Gd-1@MeOH-25 min	τ2	612.98	53.47
	τ	712.68	