A Proton Conductor Showing an Indication of Single-ion Magnet Based on a Mononuclear Dy(III) Complex

Shui-Dong Zhu^a, Lu Dong^c, Jun-Jie Hu^a, He-Rui Wen^{*, a}, Ying-Bing Lu^c, Wei-Hua Deng^b, Cai-Ming Liu^{*, d}, Shui-Jun Liu^a, Gang Xu^b and Zhi-Hua Fu^{*, b}

^aSchool of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P.R. China.

^bState Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China.

^cJiangxi Key Laboratory of Function of Materials Chemistry, College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou, 341000, P. R. China.

^dBeijing National Laboratory for Molecular Sciences, Center for Molecular Science, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.

E-mail: wenherui63@163.com, zhihuafu@fjirsm.ac.cn, cmliu@iccas.ac.cn

CONTENTS

Table S1. X-ray Diffraction Crystallographic Data for 1.

 Table S2. Selected Bond Lengths (Å) and Bond Angles (°) for 1.

Table S3. Summary of SHAPE analysis for 1.

- **Table S4.** H-bonding length and angle table for 1.
- Figure S1. Sphenocorona coordination polyhedron around the Dy^{III} ion in 1.
- Figure S2. 3-D supramolecular network of 1 formed by H-bond along the *c*-axis.
- Figure S3. TGA plot of 1.
- Figure S4. PXRD patterns of simulated one, as-synthesized sample, the sample after proton conduction of 1.
- Figure S5. Nyquist plot for 1 at 25 °C under 100% RH.
- Figure S6. Nyquist plot for 1 at 35 °C under 100% RH.
- Figure S7. The photograph of crystals of complex 1 after exposed to 25-35 °C and 60-100% RH conditions during the whole proton conductivity measurements.
- **Table S5.** Proton conductivity of 1 at 25 °C under variable relative humidity (RH).
- Table S6. Comparison of the proton conductivity of 1 with that of imidazole/imidazole

 derivates-based conducting materials.
- Figure S8. AC susceptibility measurements at frequency with 977 Hz for 1 at $H_{dc} = 0$ Oe, $H_{ac} = 2.5$ Oe.
- **Table S7.** Linear combination of two modified debye model fitting parameters from 2 to7 K at $H_{dc} = 2000$ Oe.
- **Table S8.** The comparisons of the proton conductivity and the U_{eff}/k values of 1 with thepreviously reported proton-conductive nanomagnet.

Figure S9. IR spectra for 1

Complex 1			
Formula	$C_{12}H_{16}DyN_{11}O_{11}$	\Box (mm ⁻¹)	3.747
Fw	652.86	F (000)	1276
Temp (K)	296(2)	Reflns collected	12586
Crystal system	Monoclinic	Independent reflns	1756
Space group	C2/c	R _{int}	0.0170
<i>a</i> , Å	14.3641(2)	Theta range, \Box	2.01-25.00
b, Å	15.5489(2)	Params/restraints/data	1756 / 3 / 168
<i>c</i> , Å	9.79550(10)	$R_1 \left[I > 2\sigma(I) \right]$	0.0206
\Box , (deg)	111.0960(10)	wR_2 (all data)	0.0498
$V, Å^3$	2041.16(4)	GOF on F^2	0.995
Ζ	4	$ ho_{ m max}/ ho_{ m min}$, e Å $^{-3}$	0.975/ -0.339
$D_{\rm c}$, g/cm ³	2.124		

Table 1. X-ray Diffraction Crystallographic Data for 1.

 Table S2. Selected Bond Lengths (Å) and Bond Angles (°) for 1

Bond Lengths (Å)		Bond Lengths (Å)		
Dy(1)-O(1W)#1	2.392(3)	Dy(1)-N(1)#1	2.558(3)	
Dy(1)-O(1W)	2.392(3)	Dy(1)-N(3)#1	2.558(3)	
Dy(1)-O(1)#1	2.456(3)	Dy(1)-N(3)	2.557(3)	
Dy(1)-O(1)	2.456(3)	Dy(1)-O(2)#1	2.699(3)	
Dy(1)-N(1)	2.558(3)	Dy(1)-O(2)	2.699(3)	
N(6)-O(5)	1.230(5)	C(5)-C(6)	1.355(5)	
Bond Angles (°)		Bond Angles (°)		
O(1W)#1-Dy(1)-O(1W)	146.52(13)	O(1W)#1-Dy(1)-O(1)#1	114.69(9)	
O(1W)-Dy(1)-O(1)#1	76.12(9)	O(1W)-Dy(1)-N(1)#1	137.78(9)	
O(1W)#1-Dy(1)-N(3)#1	81.12(10)	O(1)#1-Dy(1)-N(3)	139.98(9)	

Symmetry Codes for **1**, #1:-*x*, *y*, 0.5-*z*.

label	shape	symmetry	$Distortion(\tau)$
DP-10	Decagon	D _{10h}	29.422
EPY-10	Enneagonal pyramid	C _{9v}	20.278
OBPY-10	Octagonal bipyramid	D _{8h}	22.029
PPR-10	Pentagonal prism	D_{5h}	15.868
PAPR-10	Pentagonal antiprism	D _{5d}	16.180
JBCCU-10	Bicapped cube J15	D _{4h}	10.206
JBCSAPR-10	Bicapped square antiprism J17	D _{4d}	7.351
JMBIC-10	Metabidiminished icosahedron J62	C_{2v}	11.827
JATDI-10	Augmented tridiminished icosahedron J64	C_{3v}	17.005
JSPC-10	Sphenocorona J87	C_{2v}	4.359
SDD-10	Staggered Dodecahedron (2:6:2)	D2	7.726
TD-10	Tetradecahedron (2:6:2)	C_{2v}	7.919
HD-10	Hexadecahedron (2:6:2) or (1:4:4:1)	D _{4h}	13.262

Table S3. Summary of SHAPE analysis for 1.

 Table S4. H-bonding length and angle table for 1.

D-HA	d(HA)(Å)	d(DA)(Å)	<dha(å)< td=""></dha(å)<>
O1W-H1WAO4	1.93(2)	2.727(4)	160(3)
O1W-H1WAO5	2.557(18)	3.276(3)	145(3)
N2-H2O4	2.36	3.136(4)	150
N2-H2O4	2.50	3.219(4)	142
O1W-H1WBO2	2.10(2)	2.889(4)	157(3)
N4-H4O5	2.07	2.880(4)	156
O1W-H1WBO2	2.39(2)	2.776(9)	108

Figure S1. Sphenocorona coordination polyhedron around the Dy^{III} ion in 1.

Figure S2. 3-D supramolecular network of 1 formed by H-bond along the *c*-axis (green dashed lines).

Figure S3. TGA plot of 1.

Figure S4. Powder X-ray diffraction patterns of simulated one, as-synthesized sample, the sample after proton conduction of **1**.

Figure S5. Nyquist plot for 1 at 25 °C under 100% RH.

Figure S6. Nyquist plot for 1 at 35 °C under 100% RH.

Figure S7. The photograph of crystals of complex **1** after exposed to 25-35 °C and 60-100% RH conditions during the whole proton conductivity measurements.

Table S5. Proton conductivity of 1 at 25 °C under variable relative humidity (RH).

RH / %	$\boldsymbol{\sigma}$ / S cm ⁻¹
20	5.12× 10 ⁻¹⁰
30	2.47×10^{-9}
40	2.49×10^{-8}
50	1.23×10^{-7}
60	1.16×10^{-6}
70	5.73×10^{-6}
80	4.36×10^{-5}
90	2.80×10^{-4}
100	$8.70 imes 10^{-4}$

Table S6. Comparison of the proton conductivity of **1** with that of imidazole/imidazole derivates-based conducting materials by using compacted pellets at relatively low temperature. σ represents proton conductivity and RH stands for relative humidity.

	Compounds	Conductivity (S cm ⁻¹)	Conditions (°C, RH)	References
--	-----------	---------------------------------------	------------------------	------------

1	$[Dy(H_2bim)_2(NO_3)_2(H_2O)_2] \cdot (NO_3)$	$\begin{array}{c} 8.70{\times}10^{-4} \\ 1.16{\times}10^{-3} \end{array}$	25°C, 100% 35°C, 100%	This work
2	[Cr4In4(Himdc)12]·H2O [Cr7.28In0.72(Himdc)12]·H2O (L= 4,5-imidazole-dicarboxylate)	2.3×10^{-3} 2.1×10^{-3}	22.5 °C, 98% 22.5 °C, 98%	Angew. Chem. Int. Edit., 2015 , 54, 7886–7890
3	{Na[Cd(MIDC)]}n(H3MIDC=2-met hyl-1H-imidazole-4,5-dicarboxylic acid)	1.04×10 ⁻³	100°C, 98%	ACS Appl. Mater. Interfaces. 2019 , 11, 1713–1722
4	$ \{ [Co_3(p-CPhHIDC)_2(4,4 \\ '-bipy)(H_2O)]_2 H_2O \} (n) $ $ \{ [Co_3(p-CPhHIDC)_2(bpe)(H_2O)]_3 \\ H_2O \} (n) $ $ (p-CPhH4IDC=2-(4-carboxylphenyl)-1H-imidazole-4,5-dicarboxylic acid; 4,4 '-bipy=4,4 '-bipyridine, bpe=trans-1,2-bis(4-pyridyl)ethylen e) $	1.04×10^{-3} 7.02×10 ⁻⁴	100°C, 98% 100°C, 98%	<i>Chem. Eur. J.</i> , 2019 , 25, 14108–14116
5	$[M_{2}(o-CPhH_{2}IDC)_{2}(H_{2}O)(_{6})]\cdot 4H_{2}O$ $(M = Co (1) and Zn (2))$ $(o-CPhH_{4}IDC =$ $2-(2-carboxylphenyl)-1H-imidazole$ $-4,5-dicarboxylic acid) and$ $[Mn(o-CPhH_{2}IDC)(2,2'-bipy)$ $(H_{2}O)_{2}] (2,2'-bipy = 2,2'-bipyridine)$	$\begin{array}{c} 1.78{\times}10^{-4}\\ 1.68{\times}10^{-4}\\ 5.4{\times}10^{-5}\end{array}$	100°C, 98% 100°C, 98% 100°C, 98%	<i>Appl. Supf.</i> <i>Sci.</i> , 2020 , 504, 144484
6	$[M(FPhH_2IDC)_2(H_2O)_2] \cdot 4H_2O (M)$ = Cd (1); Co (2)) Ni(FPhH_2IDC)_2(2,2'-bipy)] \cdot H_2O (FPhH_3IDC = 2-(fluoro)) phenyl-4,5-imidazole dicarboxylic acid, 2,2'-bipy = 2,2'-bipyridine)	$\begin{array}{c} 2.77{\times}10^{-4}\\ 3.42{\times}10^{-5}\\ 4.61{\times}10^{-5}\end{array}$	100°C, 98% 100°C, 98% 100°C, 98%	J. Solid State Chem., 2019 , 282, 121129
7	$M(m_3-HPhIDC)(m-C_2O_4)_{0.5}(H_2O) \cdot 2$ $H_2O (M = Tb; Eu)$ $(H_3PhIDC=2-phenyl-1H-imidazole-4,5-dicarboxylic acid)$	$\begin{array}{c} 8.95 \times 10^{-4} 4.6 \\ 3 \times 10^{-4} \end{array}$	100°C, 98% 100°C, 98%	Chem. Asian. J., 2019 , 15, 182-190
8	{[Cd(p-TIPhH2IDC)2]·H2O}n [p-TIPhH3IDC = 2-p-(1H-1,2,4-triazoly)phenyl-1H-4 ,5-imidazoledicarboxylic acid] [Sr(DMPhH2IDC)2](n) [DMPhH3IDC = 2-(3,4-dimethylphenyl)-1H-imidazo le-4,5-dicarboxylic acid]	1.24×10^{-4} 9.2×10^{-4}	100°C, 98%	<i>Inorg. Chem.</i> , 2019 , 58, 5173–5182
9	${[Mn(o-CPhH2IDC)(4.4-bipy)(0.5) (H_2O)_2] \cdot 3H_2O}(n) (1)$	$5.74{\times}10^{-5} \\ 5.00{\times}10^{-5}$	100°C, 98% 100°C, 98%	<i>New J. Chem.</i> , 2019 , 43,

	{[Zn5(o-CPhH2IDC)2(o-CPhHIDC)			4859-4866
	$2(2.2-bipy)_5 - 5H_2O(n)(2)$			
	$(o-CPhH_4IDC =$			
	2-phenvl(2-carboxvl)-1-H-imidazol			
	e-4,5-dicarboxylic acid; 4,4-bipy =			
	4.4-bipyridine, 2.2-bipy =			
	2.2-bipyridine)			
	[Cd(HDMPhIDC)(H ₂ O)] _n			
10	(H ₃ DMPhIDC=2-phenvl(3.4-dimet	1 20 10-1	10000 000/	New J. Chem.,
10	hvl)-1-H-imidazole-4.5-dicarboxyli	1.30×10 ⁴	100°C, 98%	2019 , 42,
	c acid)			20197-20204
	$\{ [C_0 L_2(H_2 O)(2)] \}$			
	$(ClO_4)(2) \cdot 3DMA \cdot 0.4H_2O_{n}$	1		Cryst. Growth
11	(L=bis(4-imidazol-1-vlphenvl)diaze	3.96×10 ⁻⁴	80°C, 95%	Des., 2018,
	ne)			18, 6211–6220
	$[Ni(Imdz)_{6}]_{0.5}(1.5-NDS)_{0.5}H_{2}O$			
	$[Ni(Imdz)_{6}]_{0.5}(1,0,1,2,2,3,0,5)$			
	$[Ni(Imdz)_{6}]_{0.5}(4.4'-BPDC)_{0.5}(H_2O)$			
	(Imdz = imidazole, 1.5-NDS =	7.5×10^{-4}	80°C, 98%	Chem. Eur. J.,
12	1.5-naphtablenedisulfonic acid	3.5×10^{-4}	80°C, 98%	2019 , 25,
	2.6-NDS = 2.6-naphthalene	9.7×10^{-4}	80°C, 98%	1691–1695
	disulfonate 4 4'-BPDC =			
	4.4'-biphenyl dicarboxylic acid)			
	·,· ··································			Polvhedron
13	$\{[Sr(o-CPhH_2IDC)(H_2O)_2]\cdot 2H_2O\}_n$	6.08×10^{-5}	100°C, 98%	2019 , 169.
			,	1-7
	[Cu4(HDMPhIDC)4(H2O)4]n			D 1 1 1
14	(H ₃ DMPhIDC=2-(3,4-dimethyl)phe	2 50.10-5	10000 000/	Polynearon.,
14	nyl-4,5-imidazole dicarboxylic	2.58×10 °	100°C, 98%	2019, 158,
	acid)			377-385
	$[Sr(H_2PhIDC)_2(H_2O)_4] \cdot 2H_2O$			J. Alloys
15	(H ₃ PhIDC - 2-phenyl-4,5-imidazole	1.91×10^{-6}	90°C, 98%	<i>Compd.</i> , 2018 ,
	dicarboxylic acid)			750, 895–901
	[Zn(2-MeBIM)₂(OAc)₂]· 3H₂O			
	$[Zn(2-MeBIM)(Pht) (H_2O)] \cdot 2H_2O]$			Inora Chim
16	(2-MeBIM = 2-methyl)	4.5×10^{-6}	25°C, 100%	A ota 2015
10	benzimidazole, $OAc = acetate$	1.0×10^{-5}	25°C, 100%	Aciu., 2013 ,
	anion and Pht = dianion of			437, 107-170
	phthalate)			
	$[Sr(H_2PhIDC)_2(H_2O)_4] \cdot 2H_2O$			J. Alloys
17	(H ₃ PhIDC= 2-phenyl-4,5-imidazole	1.91×10^{-6}	90°C, 98%	<i>Compd.</i> , 2018 ,
	dicarboxylic acid)			750, 895–901
	Zn3(IBT)2(H2O)2			CrystEenCom
18	(IBT=	1.98×10^{-5}	30°C, 97%	<i>m</i> ., 2018 , 20,
	4,5-bis(tetrazol-5-yl)imidazole)			3158-3161
	${[Mn(o-CPhH_2IDC)(4.4-bipy)_{0.5}(H_2)]}$			
	$O)_2]\cdot 3H_2O_n$	5.74×10 ⁻⁵	100°C 98%	New J. Chem.,
19	{[Zn ₅ (<i>o</i> -CPhH2IDC) ₂ (<i>o</i> -CPhHIDC)	5.00×10^{-5}	100°C 98%	2019, 43,
	$2(2.2-bipy)_{5}-5H_{2}O_{n}$		100 0, 9070	4859–4866
	$(o-CPhH_4IDC = 2-phenyl$			

(2-carboxyl)-1- <i>H</i> -imidazole- 4,5-dicarboxylic acid, 4,4-bipy = 4,4-bipyridine, 2,2-bipy =		
2,2-bipyridine)		

Figure S8. AC susceptibility measurements at frequency with 977 Hz for 1 at $H_{dc} = 0$ Oe, $H_{ac} = 2.5$ Oe

Table S7. Linear combination of two modified debye model fitting parameters from 2 to 7 K at $H_{dc} = 2000$ Oe

Т	χ2	χ1	χ0	$ au_1$	α1	$ au_2$	α2
/K	/cm ³	/cm ³ mol ⁻¹	/cm ³	/s		/s	
	mol ⁻¹		mol ⁻¹				
2.0	8.17013(3	30.88637(0.05932(2	0.15681(0.61197(0.07813(0.53235(
)	3))	3)	3)	4)	3)
2.5	6.26158(2	30.05776(0.12518(3	0.07798(0.57477(0.05504(0.50642(
)	3))	3)	2)	11)	5)
3.0	4.45468(1	9.362200(0.18504(3	0.03917(0.59412(0.03087(0.38119(
	0)	4))	4)	8)	9)	6)
3.5	3.41827(4	12.06544(0.26272(2	0.01892(0.52011(0.02244(0.41470(
)	2))	5)	6)	3)	3)

4.0	2.81495(4	10.13028(0.33112(4	0.01100(0.48396(0.01581(0.39021(
)	4))	5)	5)	5)	3)
4.5	2.41554(3	19.61455(0.37435(7	0.00800(0.44415(0.00963(0.41420(
)	5))	3)	6)	2)	4)
5.0	2.14388(2	25.28558(0.42505(6	0.00517(0.41641(0.00590(0.40128(
)	3))	2)	6)	2)	2)
5.5	1.93974(6	29.67630(0.44859(9	0.00310(0.39878(0.00342(0.39020(
)	8))	5)	4)	3)	4)
6.0	1.77070(7	33.17694(0.47873(3	0.00139(0.36814(0.00149(0.36404(
)	2))	3)	3)	5)	2)
6.5	1.63772(8	46.78638(0.49054(4	0.00051(0.34091(0.00053(0.33988(
)	7))	5)	3)	3)	3)
7.0	1.53205(3	102.80047	0.51386(4	0.00020(0.31607(0.00020(0.31584(
	`		ì				

Table S8. The comparisons of the proton conductivity and the U_{eff}/k values of 1 with the previously reported proton-conductive nanomagnet. RH represents for relative humidity.

	Compounds	Proton Conductivity	$U_{ m eff}/k$	References
1	[Dy(H2bim)2(NO3)2(H2O)2]·(NO 3)	8.70×10 ⁻⁴ S⋅cm ⁻¹ under 25°C and 100% RH 1.16×10 ⁻³ S⋅cm ⁻¹ under 35°C and 100% RH	71.6 K for the FR phase and 74.4 K for the SR phase at H_{dc} = 2000 Oe.	This work
2	$[Dy_{72}(mda)_{24}(mdaH)_{8}(OH)_{120}(O) \\ $	1.80×10 ⁻³ S⋅cm ⁻¹ under 25 °C and 95% RH	19.6 K at H _{dc} = 0 Oe	<i>Adv. Mater.</i> , 2016 , 28, 10772 –10779
3	$(H_5O_2)_2(H)[Yb^{III}(hmpa)_4][Co^{III}(CN)_6]_2 \cdot 0.2H_2O (HDBM = 1,3-diphenyl-propane-1,3-dione)$	1.74×10 ⁻⁴ S·cm ⁻¹ under 25 °C and 97% RH	31.2 K at H _{dc} = 1000 Oe	J. Am. Chem. Soc., 2020 , 142, 3970–3979

