Highly efficient and thermally stable luminescence of Ca₃Gd₂Si₆O₁₈:Ce³⁺, Tb³⁺ phosphors based on efficient energy transfer

Dan Wu^{*1}, Yu Xiao², Liangliang Zhang³, Xiaoling Dong¹, Shifeng Zhao¹, Wenping Zhou¹, Qingshan Lu¹, Jiahua Zhang^{*3}

¹ School of Physical Science and Technology, Inner Mongolia Key Lab of Nanoscience and Nanotechnology, Inner Mongolia University, Hohhot, 010021, PR China

² College of Science, Nanjing Forestry University, Nanjing 210037, China

³ State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 3888 Eastern South Lake Road, Changchun 130033, China

Fig. S1 Gaussian deconvolution of CGSO:0.5%Ce³⁺.

Fig. S2 Energy level diagrams and ET processes of $Ce^{3+} \rightarrow Tb^{3+}$.

Fig. S3 Fluorescence decay curves of Tb^{3+} in CGSO: 4%Ce³⁺, *y*%Tb³⁺ (*y* = 0, 30, 96) phosphors (excited at 325 nm, monitored at 543 nm).

Fig. S4 Emission spectra inside the integrating sphere without (black line) and with (red line) the sample CGSO: 4%Ce³⁺, *y* Tb³⁺ (*y* = 0, 10, 30, 50) upon 325 nm excitation.

Table S1 The IQE, EQE, the excitation wavelength and the luminescence intensity at 150°C compared with that at room temperature (LI150) of the selected results from reported references.

samples	IQE	EQE	λ_{ex}	LI150	Refs.
	(%)	(%)	nm	(%)	
CGSO: 4%Ce ³⁺ , 50%Tb ³⁺	90.1	72.4	325	92	This work
GdBO ₃ : 0.02Ce ³⁺ , 0.12Tb ³⁺	50.1		361		[1]
$La_{3}Si_{8}N_{11}O_{4}$: 0.01Ce ³⁺ , 0.05Tb ³⁺	76.3	46.7	360	90	[2]

Li ₃ Sc ₂ (PO ₄) ₃ : 0.04Ce ³⁺ , 0.005Tb ³⁺	9%		285	47	[3]
$Ba_2Y_{1.74}(SiO_4)_3F: 2\%Ce^{3+}, 40\%Tb^{3+}$	83.12		355	82	[4]
CaScAlSiO ₆ : 0.02 Ce ³⁺ , 0.12Tb ³⁺	79.5		330		[5]
$NaBaScSi_2O_7: 0.04Ce^{3+}, 0.04Tb^{3+}$	36		349	30	[6]
Ba ₂ Y ₅ B ₅ O ₁₇ : 1%Ce ³⁺ , 20%Tb ³⁺	76	55	345	92	[7]
$MgY_4Si_3O_{13}$: 0.2Ce ³⁺ , 0.4Tb ³⁺	49		330		[8]
$BaY_{1.10}Si_{3}O_{10}{:}0.05Ce^{3+}, 0.85Tb^{3+}_{9}$	81.6		337		[9]
$Ca_2NaSiO_4F: 0.03Ce^{3+}, 0.15Tb^{3+}$	39.3		365	60	[10]
$Lu_5(SiO_4)_3N: 0.03Ce^{3+}$	42.13		359	80	[11]
$Na_3Sc_2(PO_4)_3$: 0.03 Ce^{3+} , 0.1 Tb^{3+}	65		320	85.6	[12]
$Ca_3Gd(GaO)_3(BO_3)_4$: 0.05 Ce^{3+} , 0.3 Tb^{3+}	75.5		344		[13]
Li ₂ Ca ₄ Si ₄ O ₁₃ : 0.04Ce ³⁺ , 0.08Tb ³⁺	67.3		330		[14]
$Y_5Si_3O_{12}N$: 0.18Ce ³⁺ , 0.4Tb ³⁺	85		358	80	[15]
$Sr_3Gd_2(Si_3O_9)_2$: 0.26Ce ³⁺ , 0.1Tb ³⁺	80.2		348		[16]
$KSrSc_2(PO_4)_3$: 0.03Ce ³⁺ , 0.09Tb ³⁺	66.8		310	88	[17]
Na ₂ Ca ₃ Si ₂ O ₈ : 0.04Ce ³⁺ , 0.16Tb ³⁺	85.5		330		[18]
Ca ₃ Y ₂ (Si ₃ O ₉) ₂ : 15%Ce ³⁺ , 40%Tb ³⁺	77		329		[19]
$Sr_3Y_2(Si_3O_9)_2$: 0.15Ce ³⁺ , 0.7Tb ³⁺	90.4		340		[20]
Ba ₂ Lu ₅ B ₅ O ₁₇ : 1%Ce ³⁺ , 15%Tb ³⁺	86		348	90	[21]
Sr ₃ Lu(PO ₄) ₃ : 0.04Ce ³⁺ , 0.2Tb ³⁺	67.2		310		[22]
$Y_{0.82}Ce_{0.03}Tb_{0.15}BO_3$	76.7		361	87	[23]
$(La_{0.86}Ce_{0.04}Tb_{0.1})PO_4$	84.67		275		[24]
$Ba_{3}Lu_{2}B_{6}O_{15}$: 0.03 Ce^{3+} , 0.2 Tb^{3+}	51		373	54	[25]
$[Mg_{1.25}Si_{1.25}Al_{2.5}]O_{3}N_{3}:0.03Ce^{3+},0.2Tb^{3+}$	41.14		335	65	[26]
Ca ₆ Ba(PO ₄) ₄ O: 0.03Ce ³⁺ ,0.01Tb ³⁺	79.6		365	82	[27]
BaLu ₂ SiO ₃ : 0.06Ce ³⁺ ,0.02Tb ³⁺	71.0		365	97	[28]
$BaGd_2Si_3O_{10}: 0.04Ce^{3+}, 0.4Tb^{3+}$	62		336	44	[29]
$La_2Si_2O_7$: 0.05Ce ³⁺ ,0.6Tb ³⁺	96		332	89	[30]
Sr ₃ Lu ₂ (BO ₃) ₄ : 3%Ce ³⁺ , 8%Tb ³⁺	77.5	34.8	340	70	[31]
$Ba_{3}Y_{2}B_{6}O_{15}$: 0.03C e^{3+} ,0.3T b^{3+}	49		365	22	[32]
$La_8Ba_2(Si_4P_2O_{22}N_2)O_2:0.005Ce^{3+}, 0.1Tb^{3+}$	89		290	91.2	[33]
$La_{0.59}Al_{2.03}B_4O_{10.54}$: 0.06Ce ³⁺ , 0.35 Tb ³⁺	40.9		310	56	[34]
NaBa ₄ (AlB ₄ O ₉) ₂ Cl ₃ :0.09Ce ³⁺ , 0.13Tb ³⁺		43.38	323	95.22	[35]
Sr ₂ MgB ₂ O ₆ :0.05 Ce ³⁺ ,0.05 Tb ³⁺	66.39	48.92	323	75.3	[36]
$Ca(Mg_{0.8}Al_{0.2})(Si_{1.8}Al_{0.2})O_6:0.03Ce^{3+}, 0.03Tb^{3+}$	36.81		340	70.5	[37]
$Ca_2YHf_2Al_3O_{12}$: 0.03 Ce^{3+} , 0.6 Tb^{3+}	78.5	56	408	43.3	[38]
Al ₅ O ₆ N: 0.003Eu ²⁺ , 0.01Tb ³⁺	11.1		330	51	[39]
$Sr_3NaSc(PO_4)_3F: 0.03Eu^{2+}, 0.5Tb^{3+}$	9.4		365	67	[40]

 Table S2 Rietveld refinement, crystallographic and structure parameters of the representative

 samples CGSO: 4%Ce³⁺.

Compound	x = 0
Space group	P6 ₃ / <i>m</i>

a (Å)	13.4025(1)
b (Å)	7.7878(1)
<i>c</i> (Å)	14.8698(5)
α (deg)	90
β (deg)	90.25
$\gamma(\text{deg})$	90
$V(Å^3)$	1552.049
Ζ	4
$R_{\rm p}$ (%)	5.45
$R_{\rm wp}$ (%)	8.02
R_{\exp} (%)	3.55
χ^2	5.10

According to Dexter's ET expressions of multipolar interactions and Reisfeld's approximation, the following relation can be obtained ^[41]:

$$\frac{\eta_0}{\eta} = C^{n/3} \tag{S1}$$

where *C* is the total doping concentration of Ce³⁺ and Tb³⁺, η_0 and η are the quantum efficiencies of Ce³⁺ in the absence and presence of Tb³⁺, n = 6, 8, and 10 corresponding to dipole–dipole, dipole–quadrupole and quadrupole–quadrupole interactions, respectively. The value η_0/η can be approximately estimated by the ratio of related emission intensities as ^[27]:

$$\frac{I_0}{I} = C^{n/3} \tag{S2}$$

where I_0 and I are the emission intensities of Ce³⁺ in the absence and presence of Tb³⁺. The plots of I_0/I versus $C^{n/3}$ are presented in Fig. S5. The best linear relationship can be achieved at n = 8, implying that the dipole–quadrupole interaction governs the ET process from Ce³⁺ to Tb³⁺.

Fig. S5 Dependence of I_0/I of Ce³⁺ on $C^{6/3}$, $C^{8/3}$ and $C^{10/3}$.

The ET efficiency η_{ET} from Ce³⁺ to Tb³⁺ can be calculated based on the effective lifetime by using the following equation:

$$\eta_{ET} = 1 - \frac{\tau}{\tau_0} \tag{S3}$$

where τ and τ_0 are the lifetimes of Ce³⁺ in the presence and in the absence of Tb³⁺, respectively. The calculated ET efficiencies from Ce³⁺ to Tb³⁺ using Eq. S1 were given in Table S3.

The energy transfer efficiency from Ce^{3+} to Tb^{3+} , η'_{ET} can be calculated based on the Tb^{3+} concentration dependence of the emission intensity of Ce^{3+} shown in Fig. 4, by using the following Equation:

$$\eta_{ET} = 1 - \frac{I}{I_0} \tag{S4}$$

where I_0 and I are the emission intensities of Ce³⁺ in the absence and in the presence of Tb³⁺, respectively. The calculated ET efficiencies from Ce³⁺ to Tb³⁺ using Eq. S2 were given in Table S3.

Table S3 Calculated energy transfer efficiencies of CGSO: 4%Ce³⁺, y%Tb³⁺ (x=0-96).

у	$\eta_{\rm ET} = 1 - I/I_0 (\%)$	$\eta'_{ET} = 1 - \tau / \tau_0 (\%)$
0	0	0
1	0.07	0.09

5	0.08	0.13	
10	0.15	0.41	
30	0.32	0.55	
40	0.43	0.71	
50	0.54	0.77	
60	0.57	0.83	
96	0.63	0.96	

Fig. S6 Plots of normalized total emission intensities versus temperatures for CGSO: 4%Ce³⁺, y%Tb³⁺ (y = 0, 5, 50).

The activation energy ΔE_a was calculated using the Arrhenius equation given as ^[42]:

$$I(T) = \frac{I0}{(1 - \Delta E_a / k_B T)}$$

where *I*0 is the initial total emission intensity of the phosphor at absolute zero, *I*(T) is the total emission intensity at a given temperature T, A is a constant, ΔE_a is the activation energy for thermal quenching, and k_B is the Boltzmann constant (8.617×10⁻⁵ eVK⁻¹). Fig. S6 depicts the plots of normalized total emission intensities versus temperatures for CGSO: 4%Ce³⁺, *y*%Tb³⁺ (*y* = 0, 5, 50). Through the best fit using the Arrhenius equation, ΔE_a were obtained to be 0.252 eV, 0.259 eV, and 0.262 eV for CGSO: 4%Ce³⁺, *y*%Tb³⁺ (*y* = 0, 5, 50), respectively.

REFERENCES

1. D. Wen, J. Shi, M. Wu, Q. Su, ACS Appl. Mater. Inter. 2014, 6, 10792.

2. H. B. Xu, W. D. Zhuang, R. H. Liu, Y. H. Liu, T. L. Zhou, Y. Cho, W. Gao, C. P. Yan, N.

- Hirosaki, R. J. Xie, RSC Adv. 2018, 8, 35271.
- 3. M. Jiao, Q. Xu, M. Liu, C. Yang, Y. Yu, Phys. Chem. Chem. Phys. 2018, 20, 26995.
- 4. D. Wu, W. Xiao, L. Zhang, X. Zhang, Z. Hao, G. H. Pan, Y. Luo, J. Zhang, *J. Mater. Chem. C* 2017, **5**, 11910.
- 5. W. Lü, N. Guo, Y. Jia, Q. Zhao, W. Lv, M. Jiao, B. Shao, H. You, Inorg. Chem. 2013, 52, 3007.
- 6. G. Li, Y. Wang, W. Zeng, W. Chen, S. Han, H. Guo, Y. Li, J. Mater. Chem. C 2016, 4, 3304.
- 7. Y. Xiao, Z. Hao, L. Zhang, W. Xiao, D. Wu, X. Zhang, G. H. Pan, Y. Luo, J. Zhang, *Inorg. Chem.* 2017, **56**, 4538.
- 8. H. Y. Chung, C. H. Lu, C. H. Hsu, J. Am. Ceram. Soc. 2010, 93, 1838.
- 9. Z. Xia, Y. Liang, D. Yu, M. Zhang, W. Huang, M. Tong, J. Wu, J. Zhao, J. Opt. Laser Technol. 2014, 56, 387.
- 10. M. Jiao, Y. Jia, W. Lü, W. Lv, Q. Zhao, B. Shao, H. You, J. Mater. Chem. C 2014, 2, 4304.
- 11. Q. Guo, Q. Wang, L. Jiang, L. Liao, H. Liu, L. Mei, Phys. Chem. Chem. Phys. 2016, 18, 15545.
- 12. H. Guo, B. Devakumar, B. Li, X. Huang, Dyes Pigments 2018, 151, 81.
- 13. B. Li, X. Huang, Ceram. Int. 2018, 44, 4915.
- 14. X. Kang, S. Lu, H. Wang, D. Ling, W. Lü, ACS Omega 2018, 3, 16714.
- 15. S. A. Khan, N. Z. Khan, W. W. Ji, L. Ali, H. Abadikhah, L. Hao, X. Xu, S. Agathopoulos, Q.
- Khan, L. Zhu, Dyes Pigments 2019, 160, 675.
- 16. Y. Zhu, Y. Liang, M. Zhang, M. Tong, G. Li, S. Wang, RSC Adv. 2015, 5, 98350.
- 17. M. Jiao, W. Lv, W. Lü, Q. Zhao, B. Shao, H. You, Dalton T. 2015, 44, 4080.
- 18. W. Lü, H. Xu, J. Huo, B. Shao, Y. Feng, S. Zhao, H. You, Dalton T. 2017, 46, 9272.
- 19. Y. C. Chiu, W. R. Liu, Y. T. Yeh, S. M. Jang, T. M. Chen, *J. The Electrochem. Soc.* 2009, **156**, J221.
- 20. M. Zhang, Y. Liang, R. Tang, D. Yu, M. Tong, Q. Wang, Y. Zhu, X, Wu, G. Li, *RSC Adv*. 2014, 4, 40626.
- 21. Y. Xiao, Z. Hao, L. Zhang, X. Zhang, G. H. Pan, H. Wu, H. Wu, Y. Luo, S. Zhang, J. Zhang, *J. Mater. Chem. C* 2018, **6**, 5984.
- 22. Z. Yang, D. Xu, J. Sun, J. Du, X. Gao, Mat. Sci. Eng. B 2016, 211, 13-19.
- 23. R. Sato, S. Takeshita, T. Isobe, T. Sawayama, S. Niikura, ECS J. Solid State Sc. 2012, 1, R163.

- 24. Z. Wang, Q. Zhu, X. Wang, X. Li, X. Sun, B. N. Kim, J. G. Li, Inorg. Chem. 2018, 58, 890.
- 25. X. Huang, H. Guo, L. Sun, T. Sakthivel, Y. Wu, J. Alloys Compds. 2019, 787, 865.
- 26. J. Li, X. Zhou, J. Ding, X. Zhou, Y. Wang, J. Mater. Chem. C 2019, 7, 2257.
- 27. M. Chen, Z. Xia, Q. Liu, J. Mater. Chem. C 2015, 3, 4197.
- 28. K. Li, S. Liang, H. Lian, M. Shang, B. Xing, J. Lin, J. Mater. Chem. C 2016, 4, 3443.
- 29. V. Rajagopal, X. Huang, Y. Wu, ACS Omega 2019, 4, 4384.
- W. Ma, J. Zhang, X. Zhang, X. Zhang, Y. Liu, S. Liao, S. Lian, J. Alloys Compds. 2019, 785,
 53.
- 31. Y. Zhang, X. Zhang, H. Zhang, Z. C. Wu, Y. Liu, L. Ma, X. Wang, W. R. Liu, B. Lei, J. Alloys Compds. 2019, 789, 215.
- B. Li, J. Liang, L. Sun, S. Wang, Q. Sun, B. Devakumar, G. Annadurai, D. Chen, X. Huanga,
 Y. Wu, J. Lumin. 2019, 211, 388.
- L. Dong, L. Zhang, Y. Jia, B. Shao, W. Lv, S. Zhao, H. You, *Cryst. Eng. Comm.* 2019, 21, 6226.
- 34. F. Junqin, J. Cao, Z. Li, Z. Li, J. Li, J. Lin, F. Wu, Ceram. Int. 2019, 45, 20316.
- 35. W. Zhang, Y. Liang, Y. Zhu, S. Liu, H. Li, W. Lei, J. Am. Ceram. Soc. 2019, 102, 5223.
- 36. Q. Dong, J. Yang, J. Cui, F. Xu, F. Yang, J. Peng, F. Du, X. Ye, S. Yang, *Dalton T.* 2020, **49**, 1935.
- Z. An, S. Che, Y. Song, X. Zhang, R. Dong, D. Zhang, X. Zhou, Z. Shi, H. Zou, *Inorg. Chem.* 2020, 59, 4790-4799.
- 38. S. Wang, B. Devakumar, Q. Sun, J. Liang, L. Sun, X. Huang, J. Mater. Chem. C 2020, 8, 4408-4420.
- 39. Q. Dong, J. Cui, Y. Tian, F. Yang, H. Ming, F. Du, J. Peng, X. Ye, J. Lumin. 2019, 212, 146.
- 40. Z. Yang, C. Ji, G. Zhang, G. Han, H. Wang, H. Bu, X. Tan, D. Xu, J. Sun, *J. Lumin.* 2019, **206**, 585.
- 41. D. L. Dexter, J. Chem. Phys. 1953, 21, 836.
- 42. W. Xiao, X. Zhang, Z. Hao, G. H. Pan, Y. Luo, L. Zhang, J. Zhang, *Inorg. Chem.* 2015, 54, 3189.