Achieving high energy efficiency and energy density in PbHfO₃-based antiferroelectric ceramics

Wenna Chao, ^{a, b, c} Tongqing Yang, ^{*a} Yongxiang Li, ^{*b}

a Key Laboratory of Advanced Civil Engineering Materials of the Ministry of

Education, Functional Materials Research Laboratory, School of Materials Science and

Engineering, Tongji University, 4800 Cao'an Road, Shanghai 201804, China.

b The Key Laboratory of Inorganic Functional Materials and Devices, Shanghai

Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China.

c University of Chinese Academy of Sciences, Beijing 100049, China.

Email: yangtongqing@tongji.edu.cn

Composition	Table. S1-1 The permittivity of PLHSx ceranics at room temperature.								
(Hf ⁴⁺)	1kHz	101	кHz	100 kHz		1000 kHz			
0.41	245	240		237		235			
0.43	256	253		250		249			
0.45	280	278		277		277			
0.47	294	293		292		291			
Table. S1-2 The permittivity of PLHSx ceramics at the temperature of AFE-MCC.									
Composition (Hf ⁴⁺)	1kHz	1kHz 101		100 kHz		1000 kHz			
0.41	280	278		275		273			
0.43	299	296		294		293			
0.45	332	330		329		330			
0.47	351	350		349		349			
Table. S1-3 The permittivity of PLHSx ceramics at the temperature of MCC-PE.									
Composition (Hf ⁴⁺)	1kHz	1kHz 101		100 kHz		1000 kHz			
0.41	278	257		248		247			
0.43	290	273		267		266			
0.45	310	30)5	302		302			
0.47	331	325		322		321			
Table. S2-1 The dielectric loss of PLHSx ceramics at room temperature.									
Composition (Hf ⁴⁺) 1kHz			10 kHz			100 kHz			
0.41	0.03		0.0129			0.0089			
0.43	0.43 0.019		0.01		0.007				
0.45	0.45 0.01		0.005		0.002				
0.47	0.009	9		0.004		0.002			
Table. S2-2 The die	lectric loss of PLHS	x ceramic	s at the te	mperature of A	FE-M	ICC.			
Composition (Hf ⁴⁺) 1kHz		1		0 kHz		100 kHz			
0.41 0.0182		2		0.009	0.0076				
0.43 0.011			0.006		0.005				
0.45 0.008			0.004		0.002				
0.47 0.006			0.003		0.002				
Table. S2-3 The dielectric loss of PLHSx ceramics at the temperature of MCC-PE.									
Composition (Hf ⁴⁺) 1kHz		1		0 kHz		100 kHz			
0.41 0.086			0.042		0.013				
0.43	0.0624		0.031			0.009			
0.45 0.023		0.011			0.005				
0.47 0.022			0.011		0.006				

Table. S1-1 The permittivity of PLHSx ceramics at room temperature.

Table. S3 The average ionic radii of A-site and B-site cations and tolerance factor of PLHS*x* ceramics.

Composition (Hf ⁴⁺)	R _{A-site} (Å)	R _{B-site} (Å)	Tolerance factor
0.41	1.4874	0.6982	0.9795

0.43	1.4874	0.6986	0.9794
0.45	1.4874	0.6990	0.9792
0.47	1.4874	0.6994	0.9790

Fig. S1 (a) The Raman spectra and the Lorentzian deconvolutions of PLHSx antiferroelectric ceramics; (b) The evolution of position between band a, b and Wa-b (Wa-b=Wb-Wa) as a function of Hf4+ content.

Fig. S2 The temperature dependence of wavenumber and FWHM of modes (a, b, c, d, and e) for PLHSx ceramics.

Fig. S3-1 SEM of PLHSx ceramics sintered at different temperatures prepared by (a) traditional method (b) rolling process.

Fig. S3-2 The P-E loops of Pb0.98La0.02(HfxSn1-x)0.995O3 ceramics made via (a) traditional method and (b) rolling process.

Fig. S4 The Pmax and Pr as a function of (a) temperature and (b) frequency.