Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2020

Dual promotion strategy of interface modification and ion doping for efficient and stable carbon-based planar CsPbBr₃ perovskite solar cells

[†] Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo Collaborative Innovation Center of Nonlinear Calamity System of Ocean and Atmosphere, Ningbo University, Ningbo, 315211, China

† School of Information Engineering, College of Science and Technology, Ningbo University, Ningbo, 315300, China

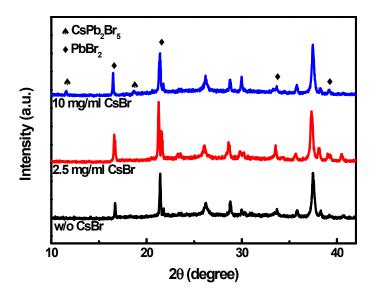

^{*} E-mail: liuxiaohui@nbu.edu.cn; zhuyuejin@nbu.edu.cn

Table S1. The fitting results of the equivalent circuit based on PSCs w/o or with CsBr modification.

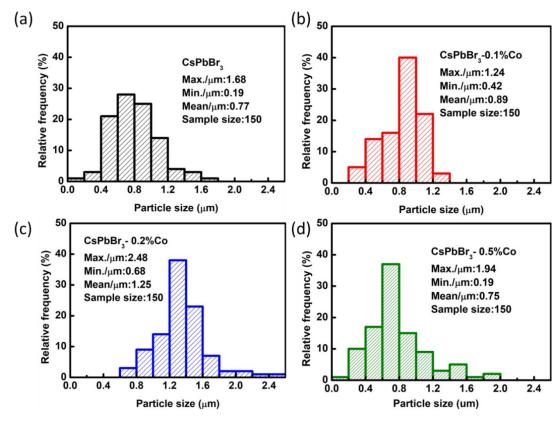
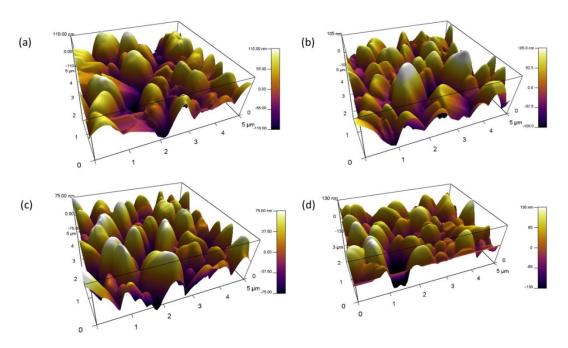

Devices	$R_{\mathrm{s}}\left(\Omega\right)$	$R_{ m co}\left(\Omega ight)$	$R_{\mathrm{rec}}\left(\Omega\right)$
w/o CsBr	174.14	4.613	5110.68
with CsBr	226.09	0.0182	10332.74

Table S2. Photovoltaic parameters of CsPbBr₃ PSCs w/o and or CsBr modified.


Devices	scan	J _{SC} (mA/cm ²)	$V_{\rm OC}$ (V)	FF	PCE (%)	НІ
w/o CsBr	forward	6.51	1.04	0.66	4.47	0.257
	reverse	6.57	1.21	0.75	6.02	0.257
with CsBr	forward	6.56	1.19	0.69	5.45	0.174
	reverse	6.64	1.21	0.82	6.60	0.174

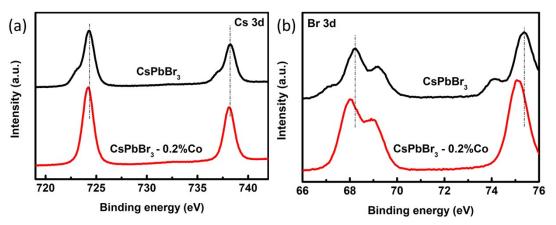

Fig. S1 XRD patterns of the PbBr₂ films modified with different concentration of CsBr (0, 2.5 mg/mL, 10 mg/mL).

Fig. S2. Frequency distribution histogram of particle size statistics (a) CsPbBr₃, (b) CsPbBr₃-0.1%Co, (c) CsPbBr₃-0.2%Co, (d) CsPbBr₃-0.5%Co.

Fig. S3. The 3D-KPFM image of (a) $CsPbBr_3$, (b) $CsPbBr_3$ -0.1%Co, (c) $CsPbBr_3$ -0.2%Co, (d) $CsPbBr_3$ -0.5%Co.

Fig. S4. High-resolution XPS spectra of CsPbBr₃ and CsPbBr₃-0.2% Co films at the Cs 3d and Br 3d.

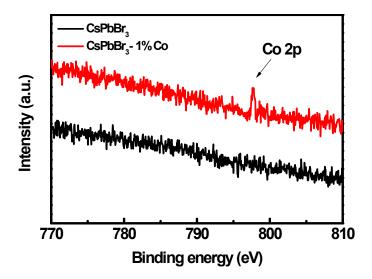


Fig. S5 High-resolution XPS spectra of CsPbBr₃ and CsPbBr₃-1%Co films.

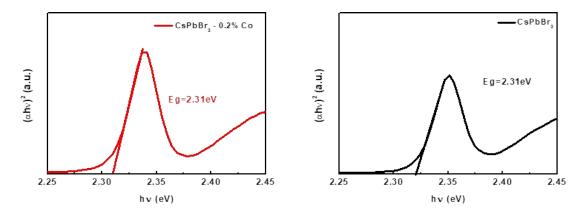


Fig. S6. Tauc plot for CsPbBr₃ and CsPbBr₃-0.2%Co perovskite films.

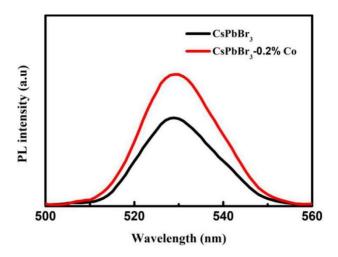


Fig. S7. Steady-state PL spectra of perovskite films fabricated on top of glass.

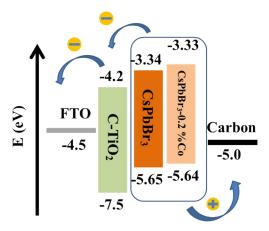


Fig. S8. The energy level diagrams of the functional layer of $CsPb_{1-x}Co_xBr_3$ PSCs.