Supporting Information

Single nanoflake based PtSe₂ p-n junction (in-plane) formed by optical excitation of point defects in BN for ultrafast switching photodiodes

Sikandar Aftab^{1*}, Ms. Samiya², Hafiz Mansoor Ul Haq³, Muhammad Waqas Iqbal³, Muhammad Hussain⁴, Saqlain Yousaf⁵, Atteq Ur Rehman⁶, Muhammad Usman Khan⁷, Zaheer Ahmed⁸, Muhammad Zahir Iqbal⁹

¹ Department of Engineering, Simon Fraser University, Burnaby, BC, Canada

²Department of Environment and Energy, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Korea

³Department of Physics, Riphah International University, 14 Ali Road, Lahore, Pakistan

⁴Department of Nanotechnology and Advanced Materials Engineering, and HMC, Sejong University, Seoul, 05006, South Korea

⁵Department of Physics, Sungkyunkwan University, Suwon, 440-746, South Korea

⁶Physical Sciences and Engineering Division (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia of Electronics Science.

⁷ National Key Laboratory of Tunable Laser Technology, Institute of Optoelectronics, Department of Electronics Science and Technology, Harbin Institute of Technology, Harbin 150080, China

⁸Department of Biochemistry, University of Agriculture, Faisalabad Pakistan.

⁹Nanotechnology Research Laboratory, Faculty of Engineering Sciences, GIK Institute of Engineering Sciences and Technology, Topi 23640, Khyber Pakhtunkhwa, Pakistan

*E-mail: physics.sikandar@gmail.com, aftab_sikandar@sfu.ca

Growth of graphene and *PtSe*₂/BN/graphene heterostructure:

For graphene growth, a popular chemical vapor deposition (CVD) method was implemented. A copper foil with a thickness of 25 μ m was positioned into a CVD furnace (Alfa Aesar with 99.8% purity). The furnace temperature was retained at 1010 °C (~10⁻⁴ Torr) with the flow of hydrogen gas (~10⁻² Torr). To synthesize graphene, hydrogen (H₂, 5 cc/min) and Methane (CH₄, 20 cc/min) were brought together into a furnace for 8 min, after stabilization of temperature (i.e., 1010 °C). Once the growth process of graphene was done the sample was cold down to a temperature of ~25 °C (room temperature). Wet transfer technique was used to transfer graphene film from the copper foil on a SiO₂/Si substrate. ^{1, 2} A monolayer graphene hall bar is achieved on Si/SiO₂ wafer by using the O₂ plasma etching technique. Ultra-thin nanoflakes of *PtSe*₂ and BN were obtained through a standard mechanical exfoliation method using an adhesive tape. Stacked *PtSe*₂ flake was partially placed on a heterostructure of BN/graphene while the remaining on BN.

Figure S1. (a) AFM image of $PtSe_2$ showing on the BN substrate. (b) AFM image of BN showing on Si substrate. (c) The $PtSe_2$ flake has a thickness of ~2.71 nm. (d) The BN nanoflake has a thickness of ~51.2 nm. (e) The Raman spectra of $PtSe_2$, BN, and graphene.

Figure S2. I_{ds} - V_{ds} characteristics of our p-n diode at zero back-gate voltage, which shows the stability which showing the effect of doping on rectifying behavior.

Figure S3. Transfer curves of p-PtSe₂ flakes showing the (a) p-type, (b) ambipolar type, and (c) n-type FETs doping at V_{ds} = 1V.

Figure S4. An illustration of photo-induced doping mechanism, where incident light excites electrons from mid-gap defect states in BN. The photons excited electrons are entered into the $PtSe_2$ flake under negative gate stress voltage which is applied to graphene during the process of doping.

Figure S5. (a) Transfer curves of p-PtSe₂ flakes on h-BN substrates. (d) Transfer curves of n-PtSe₂ flakes on h-BN after doping.

Figure S6. (a) Transfer characteristics of $n - PtSe_2$ after photo-induced doing, which shows the stability of the device in an ambient environment. (b) Carrier concentration and electron mobility as a function of retention time

Figure S7. I_{ds} - V_{ds} characteristics of our p-n diode at zero back-gate voltage, which shows the stability of the device in an ambient environment.

Figure S8. (a) The $I_{ds} - V_{ds}$ characteristics of $p - PtSe_2$ at various V_{bg} . Good ohmic contact behavior is observed with Ni/Au metal contacts. (b) The $I_{ds} - V_{ds}$ characteristics of $n - PtSe_2$ at various V_{bg} . Good ohmic contact behavior is observed with Ni/Au metal contacts.

REFERENCES

- 1. K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J.-H. Ahn, P. Kim, J.-Y. Choi and B. H. Hong, *nature*, 2009, **457**, 706.
- 2. Y. Xue, B. Wu, Y. Guo, L. Huang, L. Jiang, J. Chen, D. Geng, Y. Liu, W. Hu and G. Yu, *Nano Research*, 2011, **4**, 1208-1214.