Supporting Information

Amorphous Colloidal Photonic Crystals Assembled by Mesoporous Silica Particles for Thin Layer Chromatography with High Separation Efficiency and Colorimetric

Recognition

Xin Zhang, Yumei Ran, Qianqian Fu, and Jianping Ge*
School of Chemistry and Molecular Engineering, Shanghai Key Laboratory of Green
Chemistry and Chemical Processes, East China Normal University, Shanghai, China, 200062.
E-mail: jpge@chem.ecnu.edu.cn

Calculation of the volume fraction of micron-cracks/pores, interparticle voids, and mesopores in four photonic crystal plates

According to the SEM images and BET measurements, there are three kinds of pores in the $\mathrm{SiO}_{2} \mathrm{PC}, \mathrm{SiO}_{2} \mathrm{APC}, \mathrm{m}-\mathrm{SiO}_{2} \mathrm{PC}$, and $\mathrm{m}-\mathrm{SiO}_{2}$ APC plates. These pores are 1) micron-scale cracks/pores in PC/APC film, 2) the interparticle voids with several tens of nanometers, and 3) the mesopores inside the particles. It should be noted that the micron-scale cracks and pores are produced by the shrinkage of PC and APC domains during solvent evaporation. The interparticle voids are produced due to the close packing of spherical particles.

Before the calculation of pore ratios, the area (A) of four PC/APC films were measured by a ruler, and the film thickness (d) were measured according to the cross-sectional SEM image so that the total volume ($\mathrm{V}_{\text {totall }}$) was calculated to be their product. The mass of $\mathrm{SiO}_{2} \underline{O}^{2} \mathrm{~m}-\mathrm{SiO}_{2}$ particles ($\mathrm{m}_{\mathrm{SiO}_{2}}$) was measured as the differential weight between the TLC plate and glass sides. The density of SiO_{2} particles ($\rho_{\mathrm{SiO}_{2}}$) was considered as $2.04 \mathrm{~g} / \mathrm{cm}^{3}$ according to the bulk densities. The unit-mass mesopore volume of SiO_{2} and $\mathrm{m}-\mathrm{SiO}_{2}\left(\mathrm{~V}_{\mathrm{BET}}\right)$ was measured to be 0 and $1.056 \mathrm{~cm}^{3} / \mathrm{g}$, respectively, by the N_{2} adsorption-desorption tests. Therefore, the density of $\underline{\mathrm{m}-\mathrm{SiO}_{2}} \underline{p}^{\text {particles }}\left(\rho_{\underline{\mathrm{m}}-\mathrm{SiO} 2}\right.$) was calculated to be $0.647 \mathrm{~g} / \mathrm{cm}^{3}$, since 1 g of $\mathrm{m}-\mathrm{SiO}_{2}$ particles have the total volume of silica $\left(1 / 2.04 \mathrm{~cm}^{3}\right)$ and mesopores $\left(1.056 \mathrm{~cm}^{3}\right)$.

First of all, the volume of mesopores ($\mathrm{V}_{\text {meso }}$) could be calculated by the product of $\mathrm{m}_{\mathrm{SiO} 2}$ and $\mathrm{V}_{\text {BET }}$. Then, the volume fraction of mesopores ($\mathrm{f}_{\text {meso }}$) was calculated to be the ratio of $\mathrm{V}_{\text {meso }}$ and
$\mathrm{V}_{\text {totala }}$, as shown in Eq (1).

$$
\begin{equation*}
f_{\text {meso }}=\frac{V_{\text {meso }}}{V_{\text {tn+n }}}=\frac{m_{\text {SiO2 }} \times V_{B E T}}{A \times d} \tag{1}
\end{equation*}
$$

Secondly, the volume of particles ($\mathrm{V}_{\text {sphere }}$) in these four PC/APC films could be calculated according to their mass and densities. In a colloidal photonic crystal, the volume fractions of particles and interparticle voids are 74% and 26% according to the close-packed fcc structure. While, in an amorphous colloidal crystal, the volume fractions of particles and interparticle voids are approximately 64% and 36%, according to the literature. Therefore, the volume of interparticle voids ($\mathrm{V}_{\text {voids }}$) actually could be calculated according to $\mathrm{V}_{\text {sphere }}$ and crystal structures. Eventually, the volume fraction of interparticle voids ($\mathrm{f}_{\text {voids }}$) was calculated to be the ratio of $\mathrm{V}_{\text {voids }}$ and $\mathrm{V}_{\text {totala }}$, as shown in Eq (2) for the $\mathrm{SiO}_{2} \mathrm{PC}$ and the $\mathrm{m}-\mathrm{SiO}_{2} \mathrm{PC}$, and Eq (3) for the $\mathrm{SiO}_{2} \mathrm{APC}$ and the $\mathrm{m}-\mathrm{SiO}_{2} \mathrm{APC}$.

$$
\begin{align*}
& f_{\text {voids }}=\frac{V_{\text {voids }}}{V_{+n+n l}}=\frac{m_{\text {SiO2 }} / \rho \div 0.74 \times 0.26}{A \times d} \tag{2}\\
& f_{\text {voids }}=\frac{V_{\text {voids }}}{V_{+n+n l}}=\frac{m_{\text {SiO2 } 2} / \rho \div 0.64 \times 0.36}{A \times d} \tag{3}
\end{align*}
$$

Thirdly, the volume of the micron-scale cracks or pores $\left(\mathrm{V}_{\text {micron }}\right)$ was the subtraction of $\mathrm{V}_{\text {sphere }}$ and $\mathrm{V}_{\text {voids }}$ from $\mathrm{V}_{\text {total }}$. Then, the volume fraction of micron-scale cracks/pores ($\mathrm{f}_{\text {micron }}$) was calculated to be the ratio of $\mathrm{V}_{\text {micron }}$ and $\mathrm{V}_{\text {total }}$, as shown in Eq (4) for the $\mathrm{SiO}_{2} \mathrm{PC}$ and the m$\mathrm{SiO}_{2} \mathrm{PC}$, and Eq (5) for the $\mathrm{SiO}_{2} \mathrm{APC}$ and the $\mathrm{m}-\mathrm{SiO}_{2} \mathrm{APC}$.

$$
\begin{align*}
& f_{\text {micron }}=\frac{V_{\text {total }}-V_{\text {sphere }}-V_{\text {voids }}}{V_{\text {tntal }}}=1-\frac{m_{\text {SiO2 }} / \rho \div 0.74}{A \times d} \tag{4}\\
& f_{\text {micron }}=\frac{V_{\text {total }}-V_{\text {sphere }}-V_{\text {voids }}}{V_{\text {tntal }}}=1-\frac{m_{\text {Sio2 }} / \rho \div 0.64}{A \times d} \tag{5}
\end{align*}
$$

Figure S1. OM images of 4-NP sample spots with different loading concentration

Figure S2. 4-NP sample spots with different loading concentration, developed by eluent

Figure S3. Development of 4-NP on the same APC plate for 4 times.

Figure S4. Three different APC-TLC plate used for the separation of 4-NP and 4-TBP

Figure S5. Digital photo of SiO_{2} gel TLC plate for the separation of 4-NP, 2-NBD in different developing solvent

Figure S6. Digital photo of SiO_{2} gel TLC plate for the separation of 2-NBD, 4-TBP in different developing solvent

Figure S7. Digital photo of SiO_{2} gel TLC plate for the separation of 4-NP, 4-TBP in different developing solvent

Figure S8. Digital photo of SiO_{2} gel TLC plate for the separation of 4-NP, 2-NBD, 4-TBP in different developing solvent

Table S1.1 Calculation of volume fraction of "mesopores" inside TLC plate

TLC plate	$\mathrm{m}_{\mathrm{SiO} 2}$ (mg)	$\mathrm{V}_{\text {BET }}$ $\left(\mathrm{cm}^{3} / \mathrm{g}\right)$	$\mathrm{V}_{\text {meso }}$ $\left(\mathrm{mm}^{3}\right)$	A $\left(\mathrm{cm}^{2}\right)$	d $(\mu \mathrm{m})$	$\mathrm{V}_{\text {total }}$ $\left(\mathrm{mm}^{3}\right)$	$\mathrm{f}_{\text {meso }}$ $(\%)$
$\mathrm{SiO}_{2} \mathrm{PC}$	8.30	0	0	5.025	11.43	5.743	0.00
$\mathrm{SiO}_{2} \mathrm{APC}$	40.0	0	0	18.125	22.19	40.22	0.00
$\mathrm{~m}^{2} \mathrm{SiO}_{2} \mathrm{PC}$	2.83	1.056	2.988	4.650	13.66	6.352	47.0
$\mathrm{~m}-\mathrm{SiO}_{2} \mathrm{APC}$	14.0	1.056	14.78	18.125	23.47	42.54	34.8

Table S1.2 Calculation of volume fraction of "interparticle voids" inside TLC plate

TLC plate	$\mathrm{m}_{\text {SiO2 }}$ (mg)	$\rho_{\text {sphere }}$ $\left(\mathrm{g} / \mathrm{cm}^{3}\right)$	$\mathrm{V}_{\text {sphere }}$ $\left(\mathrm{mm}^{3}\right)$	$\mathrm{V}_{\text {voids }}$ $\left(\mathrm{mm}^{3}\right)$	A $\left(\mathrm{cm}^{2}\right)$	d $(\mu \mathrm{m})$	$\mathrm{V}_{\text {total }}$ $\left(\mathrm{mm}^{3}\right)$	$\mathrm{f}_{\text {voids }}$ $(\%)$
SiO_{2} PC	8.30	2.040	4.069	1.430	5.025	11.43	5.743	24.9
SiO_{2} APC	40.0	2.040	19.61	11.03	18.125	22.19	40.22	27.4
$\mathrm{~m}^{2} \mathrm{SiO}_{2}$ PC	2.83	0.647	4.374	1.537	4.650	13.66	6.352	24.2
$\mathrm{~m}-\mathrm{SiO}_{2}$ APC	14.0	0.647	21.64	12.17	18.125	23.47	42.54	28.6

Table S1.3 Calculation of volume fraction of "micron-cracks/pores" inside TLC plate

TLC plate	$\mathrm{m}_{\text {SiO2 }}$ (mg)	$\rho_{\text {sphere }}$ $\left(\mathrm{g} / \mathrm{cm}^{3}\right)$	$\mathrm{V}_{\text {sphere }}$ $\left(\mathrm{mm}^{3}\right)$	$\mathrm{V}_{\text {micron }}$ $\left(\mathrm{mm}^{3}\right)$	A $\left(\mathrm{cm}^{2}\right)$	d $(\mu \mathrm{m})$	$\mathrm{V}_{\text {total }}$ $\left(\mathrm{mm}^{3}\right)$	$\mathrm{f}_{\text {micron }}$ $(\%)$
SiO_{2} PC	8.30	2.040	4.069	0.245	5.025	11.43	5.743	4.3
SiO_{2} APC	40.0	2.040	19.61	9.582	18.125	22.19	40.22	23.8
$\mathrm{~m}_{-\mathrm{SiO}_{2} \text { PC }}$	2.83	0.647	4.374	0.441	4.650	13.66	6.352	6.9
$\mathrm{~m}_{-\mathrm{SiO}_{2} \text { APC }}$	14.0	0.647	21.64	8.729	18.125	23.47	42.54	20.5

Table S2. TLC parameters for the separation of 4-NP and 2-NBD by traditional SiO_{2} gel TLC (Entry 1-7) and m-SiO 2_{2} APC-TLC (Entry 8).

Entry	PE / EA	$\mathrm{L}_{4-\mathrm{NP}} / \mathrm{cm}$	$\mathrm{W}_{4-\mathrm{NP}} / \mathrm{cm}$	$\mathrm{L}_{2 \text {-NBD }} / \mathrm{cm}$	$\mathrm{W}_{2 \text {-NBD }} / \mathrm{cm}$	R
1	$40: 0$	0.02	0.05	0.18	0.25	1.00
2	$40: 2$	0.13	0.25	0.43	0.35	1.00
3	$40: 4$	0.43	0.55	0.90	0.40	1.00
4	$40: 6$	0.50	0.40	0.88	0.35	1.00
5	$40: 8$	0.90	0.80	1.50	0.40	1.00
6	$40: 10$	0.98	0.65	1.50	0.40	1.00
7	$40: 12$	1.13	0.75	1.70	0.40	1.00
8	$40: 1$	0.88	0.35	1.55	0.3	2.08

Table S3. TLC parameters for the separation of 2-NBD and 4-TBP by traditional SiO_{2} gel TLC (Entry 1-7) and m-SiO 2 APC-TLC (Entry 8).

Entry	PE / EA	$\mathrm{L}_{2-\mathrm{NBD}} / \mathrm{cm}$	$\mathrm{W}_{2-\mathrm{NBD}} / \mathrm{cm}$	$\mathrm{L}_{4-\mathrm{TBP}} / \mathrm{cm}$	$\mathrm{W}_{4-\mathrm{TBB}} / \mathrm{cm}$	R
1	$40: 0$	0.15	0.30	0.15	0.30	0.00
2	$40: 2$	0.63	0.45	0.63	0.45	0.00
3	$40: 4$	0.70	0.40	1.00	0.20	1.00
4	$40: 6$	1.23	0.55	1.63	0.25	1.00
5	$40: 8$	1.43	0.55	1.83	0.25	1.00
6	$40: 10$	1.53	0.45	1.88	0.25	1.00
7	$40: 12$	1.63	0.45	2.00	0.30	1.00
8	$40: 1$	1.40	0.40	2.10	0.40	1.75

Table S4. TLC parameters for the separation of 4-NP and 4-TBP by traditional SiO_{2} gel TLC (Entry 1-9) and m-SiO 2 APC-TLC (Entry 10).

Entry	$\mathrm{PE} / \mathrm{EA}$	$\mathrm{L}_{4-\mathrm{NP}} / \mathrm{cm}$	$\mathrm{W}_{4-\mathrm{NP}} / \mathrm{cm}$	$\mathrm{L}_{4-\mathrm{TBP} / \mathrm{cm}}$	$\mathrm{W}_{4-\mathrm{TBP}} / \mathrm{cm}$	R
1	$40: 0$	0.08	0.15	0.39	0.47	1.00
2	$40: 2$	0.20	0.40	0.91	0.58	1.45
3	$40: 4$	0.50	0.60	1.35	0.60	1.42
4	$40: 6$	0.63	0.65	1.53	0.55	1.50
5	$40: 8$	0.83	0.85	1.76	0.52	1.36
6	$40: 10$	1.13	0.85	1.93	0.45	1.23
7	$40: 12$	1.29	0.62	1.93	0.45	1.19
8	$40: 14$	1.36	0.52	1.88	0.35	1.18
9	$40: 16$	1.60	0.60	2.10	0.40	1.00
10	$40: 1$	0.65	0.5	1.55	0.30	2.25

Table S5. TLC parameters for the separation of 4-NP, 2-NBD and 4-TBP by traditional SiO_{2} gel TLC (Entry 1-7) and $\mathrm{m}-\mathrm{SiO}_{2}$ APC-TLC (Entry 8).

Ent	$\mathrm{PE} / \mathrm{EA}$	L_{4-} $\mathrm{NP} / \mathrm{cm}$	W_{4-} $\mathrm{NP} / \mathrm{cm}$	L_{2-} $\mathrm{NBD} / \mathrm{cm}$	W_{2-} $\mathrm{NBD}^{2} / \mathrm{cm}$	L_{4-} $\mathrm{TBP} / \mathrm{cm}$	W_{4-} $\mathrm{TBP} / \mathrm{cm}$	R_{NP} NBD	$\mathrm{R}_{\mathrm{NBD}}$ -TBP
1	$40: 0$	0.02	0.05	0.23	0.35	0.23	0.35	1.00	0.00
2	$40: 2$	0.13	0.25	0.50	0.40	0.50	0.40	1.15	0.00
3	$40: 4$	0.33	0.45	0.80	0.40	1.05	0.10	1.12	1.00
4	$40: 6$	0.48	0.55	1.03	0.35	1.30	0.20	1.22	1.00
5	$40: 8$	0.66	0.68	1.33	0.35	1.63	0.25	1.29	1.00
6	$40: 10$	1.10	0.70	1.75	0.30	2.00	0.20	1.30	1.00
7	$40: 12$	1.30	0.60	1.85	0.30	2.13	0.25	1.22	1.00
8	$40: 1$	0.85	0.30	1.53	0.35	2.10	0.40	2.08	1.53

