Supporting Information

StretchableandSelf-HealableOrganosiliconConductiveNanocomposite for Reliable and Sensitive Strain SensorKaiming Zhang, Chengxin Song, Zhe Wang, Chuanhui Gao, Yumin Wu, Yuetao Liu*State Key Laboratory Base for Eco-Chemical Engineering, College of Chemical

Engineering, Qingdao University of Science and Technology, Qingdao 266042, China

Correspondence to: Yuetao Liu (E-mail: <u>yuetaoliu@qust.edu.cn</u>)

Tel: + 86 532 84023170

Table S1 The properties of PDMS-Zn²⁺, PDMS/2wt%MWCNTs-Zn²⁺,

PDMS/4wt%MWCNTs-Zn²⁺, PDMS/6wt%MWCNTs-Zn²⁺, PDMS/8wt%MWCNTs-

	Stress at break	Elongation at	Young's modulus	Tg (°C)
	(MPa)	break (%)	(MPa)	
PDMS-Zn ²⁺	0.93±0.16	549±36	0.30±0.06	-114.10
PDMS/2wt%MWCNTs-Zn ²⁺	1.19±0.21	433±29	0.49±0.07	-113.98
PDMS/4wt%MWCNTs-Zn ²⁺	1.86±0.27	313±26	1.19±0.12	-113.87
PDMS/6wt%MWCNTs-Zn ²⁺	1.94±0.29	258±21	1.47±0.14	-113.44
PDMS/8wt%MWCNTs-Zn ²⁺	2.71±0.46	203±20	2.74±0.21	-113.22
PDMS/10wt%MWCNTs-Zn ²⁺	4.39±0.63	169±16	5.07±0.29	-112.62

 Zn^{2+} and PDMS/10wt%MWCNTs- Zn^{2+} .

Figure S1 The digital picture and corresponding Zeta potential of PDMS/10wt%MWCNTs-Zn²⁺ suspension (placed for three days).

Figure S2 Preparation route of MWCNTs-DHBA.

Figure S3 X-ray photoelectron spectra analyses of MWCNTs-DHBA: survey scan.

Figure S4 Energy dispersive X-ray spectrum (EDS) elemental maps of MWCNTs-DHBA, including C, N and O elements. The uniform distribution of O element

illustrating the successful preparation of MWCNTs-DHBA.

Figure S5 Preparation route of PDMS-DHBA.

Figure S6 Cyclic stress-strain curves of PDMS/10wt%MWCNTs-Zn²⁺.

Figure S7 Tan δ curves of PDMS-Zn²⁺ and PDMS/MWCNTs-Zn²⁺ with different

MWCNTs-DHBA mass ratios.

Figure S8 Stereomicroscope images of PDMS/10wt%MWCNTs-Zn²⁺ damaged and

repaired samples at di□erent self-healing time.

Figure S9 Temperature sweeps of PDMS/10wt%MWCNTs-Zn²⁺ before and after

self-healing.

Figure S10 Conductivity of PDMS/MWCNTs-Zn²⁺ with different MWCNTs-DHBA

Figure S11 Relative resistance change ($\Delta R/R_0$) of PDMS/10wt%MWCNTs-Zn²⁺

during stretching process.

Figure S12 The corresponding resistance of the PDMS/10wt%MWCNTs-Zn²⁺ when

it was stretched to 40%, 80%, 120% and 160% strain.