Synthesis, Mesomorphism, Photophysics and Device

Performance of Liquid-crystalline

Pincer Complexes of Gold(III)

Rachel R. Parker^a, Denghui Liu^c, Xiankang Yu^c, Adrian C. Whitwood^a, Weiguo

Zhu^c,

J. A. Gareth Williams^{b,*}, Yafei Wang^{c,*},

Jason M. Lynam^{a,*} and Duncan W. Bruce^{a,*}

Supplementary Information

Instrumentation

¹H NMR spectra were measured on a Jeol ECS400 spectrometer operating at 400 MHz with chemical shifts referred to residual non-deuterated CHCl₃ signals. Concentration-dependent ¹H spectra were measured on a Bruker 500 AVANCE II spectrometer operating at 500 MHz.

Mass spectra (ESI and APCI) were collected on Bruker compact time of flight mass spectrometer; spectra were internally calibrated using sodium formate as the calibrant. Samples were transferred to the spectrometer an Agilent 1260 Infinity LC system.

Cyclic Voltammetry was performed using an EmStat3+. A glassy carbon working electrode and platinum wire counter electrode were used to study solutions containing 1 mM of [Au], where [Au] is the gold complex in question, and 0.1 M [NBu₄][PF₆] in a CH_2Cl_2 solution. Ferrocene was used as an internal reference. Cyclic voltammetry was performed between +0.7 and -2.5 V for 3 scans at a scan rate of (100 mV s⁻¹).

Elemental analysis was carried out using an Exeter Analytical Inc. CE-440 Analyser and Sartorius S2 analytical balance; calibration was performed against acetanilide standards and checked by the use of *S*-benzyl thiouronium chloride as internal standard.

Polarising optical microscopy was carried out using an Olympus BX50 polarising microscope equipped with a Linkam scientific LTS350 heating stage, Linkam LNP2 cooling pump, and Linkam TMS92 controller, differential scanning calorimetry was performed on a Mettler DSC822^e using Mettler STAR-E software, which was calibrated before use against indium and zinc standards under an atmosphere of dry nitrogen. Small-angle X-ray scattering was recorded using a Bruker D8 Discover equipped with a temperature controlled, bored graphite rod furnace, custom built at the University of York. Cu-K_a (λ = 0.154056 nm) radiation was used, generated from a 1 µS microfocus source. Diffraction patterns were recorded on a 2048 × 2048 pixel Bruker VANTEC 500 area detector set at a distance of 121 mm from the sample, allowing simultaneous collection of small angle and wide angle scattering data. Samples were measured in 1 mm capillary tubes in a magnetic field of *ca* 1 T.

The absorption spectra of the complexes were measured in solution in CH_2Cl_2 in 1 cm pathlength quartz cuvettes using a Biotek Instruments XS spectrometer. Emission spectra were recorded using a Jobin Yvon Fluoromax-2 spectrometer equipped with a Hamamatsu R928 photomultiplier tube (PMT). For the measurements at 298 K, the solutions were contained within 1 cm pathlength quartz cuvettes modified for connection to a vacuum line. Degassing was achieved via a minimum of three freeze-pump-thaw cycles whilst connected to the vacuum manifold; final vapour pressure at 77 K was < 5 x 10^{-2} mbar, as monitored using a Pirani gauge. Luminescence quantum yields were determined using aqueous [Ru(bipy)₃]Cl₂ as the standard (ϕ = 0.040 in air-equilibrated aqueous solution).¹ Emission spectra at 77 K were recorded in a glass of EPA (= diethyl ether / isopentane / ethanol, 2:2:1 v/v) in 4 mm diameter tubes held within a liquid-nitrogen-cooled quartz dewar. The luminescence lifetimes of the complexes in deoxygenated solution and at 77 K were measured by multi-channel scaling following excitation into the lowest-energy absorption band using a microsecond pulsed xenon lamp; an appropriate excitation wavelength corresponding to the low-energy absorption band of the complexes was selected by means of a monochromator. The emitted light was detected at 90° using a Peltier-cooled R928 PMT after passage through a monochromator. The lifetimes in air-equilibrated solution (< 10 μ s) were measured by time-correlated single photon counting (TCSPC), following excitation at 374 nm with a pulsed laser diode.

Diffraction data were collected at 110 K on an Oxford Diffraction SuperNova dual-source X-ray diffractometer with CuK α radiation (λ = 1.54184) using a EOS CCD camera. The crystal was cooled with an Oxford Instruments Cryojet. Diffractometer control, data collection, initial unit cell determination, frame integration and unit-cell refinement was carried out with 'Crysalis'.² Face-indexed absorption corrections were applied using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.³ OLEX2⁴ was used for overall structure solution, refinement and preparation of computer graphics and publication data. Within OLEX2, the algorithm used for structure solution was ShelXT.⁵ Refinement by full-matrix least-squares used the SHELXL-97⁶ algorithm within OLEX2.⁴ All non-hydrogen atoms were refined anisotropically. Hydrogen atoms were placed using a 'riding model' and included in the refinement at calculated positions.

Device fabrication and Measurements: The patterned ITO substrates were rinsed with acetone and isopropyl alcohol using sonication for 15 min, followed by 15 min UV-ozone-treatment. After surface treatment, the PEDOT:PSS layer was spin-coated onto the ITO substrate as the hole-injecting layer, and then annealed at 150 °C for 15 min. The emissive layers were prepared by spin-coating onto the PEDOT:PSS and then annealed at 80 °C for 15 min. The hole blocking layer, electron-transporting and the cathode materials were thermally evaporated onto the emitter layer in a vacuum chamber. The thermally evaporated deposition rates are 0.6^{-1} Å s⁻¹ for organic layers, 0.1 Å s⁻¹ for Liq and 1.5-1.8 Å s⁻¹ for Al electrode, respectively. The currentvoltage-luminance (*J-V-L*) characteristics and the electroluminescence spectra of the devices were simultaneously obtained by using a spectroradiometer (PR735) and Keithley 2400 sourcemeter unit under ambient atmosphere at room temperature.

Synthesis

Cyclometallating Ligands

2,6-Bis(4-methoxyphenyl)pyridine (1): 2,6-dibromopyridine (2.59 g, 10.9 mmol) and 4methoxyphenyl boronic acid (5.01 g, 32.9 mmol) were added to a flask containing Pd(OAc)₂ (13.1 mg, 0.5 mol%) and K₃PO₄ (6.99 g, 32.9 mmol). Ethylene glycol (80 cm³) was added, and the reaction mixture heated to 80 °C for 1.5 hours with vigorous stirring. The reaction mixture was cooled to room temperature, isolated by filtration and washed with water (150 cm³), after which it was air dried. The resulting grey solid was dissolved in CH₂Cl₂ and filtered through Celite[®]. The filtrate was collected and the solvent removed under reduced pressure. The solid, off-white residue was crystallised from ethanol to give the pure product as colourless crystals. 2.16 g (68 %).

¹H NMR (400 MHz, CDCl₃): δ = 8.09 (4H, AA'XX'), 7.73 (1H, t, ³J_{HH} = 7.6 Hz), 7.56 (2H, d, ³J_{HH} = 8.0 Hz), 7.0 (4H, AA'XX'), 3.87 (6H, s) ppm; CHN elemental analysis: observed (calculated): %C 78.0 (78.3), %H 5.9 (5.9), %N 4.8 (4.8).

2,6-Bis(3,4-dimethoxyphenyl)pyridine (1): Synthesised as for 2,6-bis(4-methoxyphenyl)-pyridine, using 2,6-dibromopyridine (2.21 g, 9.21 mmol), 3,4-dimethoxyphenyl boronic acid (5.02 g, 27.4 mol) and crystallised from ethanol to give colourless crystals. 2.94 g (91 %).

¹H NMR (400 MHz, CDCl₃): δ = 7.82 (2H, d, ⁴J_{HH} = 2.0 Hz), 7.74 (1H, t, ³J_{HH} = 7.2 Hz), 7.64 (2H, dd, ³J_{HH} = 8.4 Hz, ⁴J_{HH} = 1.6 Hz), 7.67 (2H, d, ³J_{HH} = 7.6 Hz), 6.97 (2H, d, ³J_{HH} = 8.4 Hz), 4.01 (6H, s), 3.96 (6H, s) ppm. CHN elemental analysis: observed (calculated): %C 71.8 (71.8), %H 6.1 (6.0), %N 4.0 (4.0).

2,6-Bis(4-hydroxyphenyl)pyridine (2): 2,6-bis(4-methoxyphenyl)pyridine (1.52 g, 5.13 mmol) was added to molten pyridinium chloride (7.47 g, 64.6 mmol) at 200 °C and stirred for 16 hours. The still molten mixture was added to distilled water (100 cm³) and the resulting yellow

precipitate was isolated by filtration and air-dried. It was used without further purification. 952 mg (71 %).

¹H NMR (400 MHz, d₆-DMSO): δ = 9.74 (2H, s), 7.99 (4H, AA'XX'), 7.77 (1H, t, ³J_{HH} = 7.6 Hz), 7.64 (2H, d, ³J_{HH} = 7.6 Hz), 6.85 (4H, AA'XX') ppm.

2,6-Bis(3,4-dihydroxyphenyl)pyridine (2): Synthesised as for 2,6-bis(4-hydroxyphenyl)pyridine using 2,6-bis(3,4-dimethoxyphenyl)pyridine (1.21 g, 3.40 mmol). 743 mg (73 %).

¹H NMR (400 MHz, d₆-DMSO): δ = 9.20 (2H, s), 9.06 (2H, s), 7.72 (1H, t, ³J_{HH} = 7.6 Hz), 7.63 (2H, d, ⁴J_{HH} = 2.0 Hz), 7.55 (2H, d, ³J_{HH} = 8.0 Hz), 7.41 (2H, dd, ³J_{HH} = 8.4 Hz, ⁴J_{HH} = 2.0 Hz), 6.82 (2H, d, ³J_{HH} = 8.0 Hz) ppm.

2,6-bis(4-dodecyloxyphenyl)pyridine (3): 2,6-bis(4-hydroxyphenyl)pyridine (0.903 g, 3.42 mmol), 1-bromododecane (2.06 cm³, 8.63 mmol), K_2CO_3 (1.41 g, 10.2 mmol) were heated to 90 °C in DMF (50 cm³) for 16 hours. The reaction mixture was cooled to room temperature and the solid isolated by filtration and washed with water (150 cm³) and acetone (60 cm³) and left to air dry. 1.67 g (82 %).

¹H NMR (400 MHz, CDCl₃): δ = 8.06 (4H, AA'XX'), 7.71 (1H, t, ³J_{HH} = 7.6 Hz), 7.55 (2H, d, ³J_{HH} = 7.6 Hz), 6.98 (4H, AA'XX'), 4.0 (4H, t, ³J_{HH} = 6.8 Hz), 1.79 (4H, m), 1.47 (4H, m), 1.21 (32H, broad m), 0.87 (6H, t, ³J_{HH} = 7.2 Hz) ppm; CHN elemental analysis: observed (calculated): %C 82.0 (82.0), %H 10.1 (10.3), %N 2.3 (2.3)

2,6-Bis(3,4-bis-dodecyloxyphenyl)pyridine (3): Synthesised as for 2,6-bis(4-

dodecyloxyphenyl)pyridine using 2,6-bis(3,4-dihydroxyphenyl)pyridine (1.02 g, 3.41 mmol), 1-bromododecane (5.22 cm³, 21.6 mmol), K_2CO_3 (5.91 g, 42.6 mmol). 2.27 g (70 %).

¹H NMR (400 MHz, CDCl₃): δ = 7.79 (2H, d, ⁴J_{HH} = 2.0 Hz), 7.71 (1H, t, ³J_{HH} = 7.6 Hz), 7.61 (2H, dd, ³J_{HH} = 8.4 Hz, ⁴J_{HH} = 2.4 Hz), 7.55 (2H, d, ³J_{HH} = 8.0 Hz), 6.95 (2H, d, ³J_{HH} = 8.4 Hz), 4.11 (4H, t, ³J_{HH} = 6.4 Hz), 4.05 (4H, t, ³J_{HH} = 6.4 Hz) 1.84 (8H, m), 1.47 (8H, m), 1.24 (64H, broad m), 0.87 (6H, t,

³J_{HH} = 6.8 Hz), 0.87 (6H, t, ³J_{HH} = 7.2 Hz) ppm; CHN elemental analysis: observed (calculated): %C 80.4 (80.6), %H 11.2 (11.3), %N 1.5 (1.5)

Phenylalkynyl Ligands

4-Ethynyl-1,2-bisalkoxybenzene ligands were synthesised *via* literature procedure, 4-ethynyl-1alkoxybenzene and 5-ethynyl-1,2,3-tri(alkoxy)benzene ligands synthesised partially by modification of the same.⁷

General Procedure for the Synthesis of 4-Octyloxybenzaldehyde:

Under at atmosphere of nitrogen, the appropriate 1-bromoalkane (1.1 eq.) was added to a flask of 4-hydroxybenzaldehyde (1.0 eq.) and K_2CO_3 (1.1 eq.), along with a catalytic amount of KI. DMF (70 cm³) was added and the reaction mixture was heated to 90 °C for 16 hours. The reaction mixture was then cooled to room temperature and insoluble salts were removed *via* by filtration and the solvent removed *in vacuo* from the filtrate. The residue was extracted into hexane and washed with 2M NaOH(aq) solution, brine and saturated LiCl_(aq) solution, dried over MgSO₄ and concentrated *in vacuo*. The residue was purified by column chromatography on silica gel using CH₂Cl₂ as the eluent.

4-Octyloxybenzaldehyde: As above, with 4-hydroxybenzaldehyde (2.99 g, 24.5 mmol), 1bromooctane (5.95 cm³, 6.71 g, 34.7 mmol) and K₂CO₃ (4.43 g, 32.0 mmol). 4.71 g. (82%).

¹H NMR (400 MHz, CDCl₃): δ = 9.88 (1H, s), 7.82 (2H, AA'XX'), 6.99 (2H, AA'XX'), 4.03 (2H, t, ³J_{HH} = 6.4 Hz), 1.81 (2H, m), 1.46 (2H, m), 1.24 (8H, m), 0.89 (3H, t, ³J_{HH} = 6.8 Hz) ppm.

4-Decyloxybenzaldehyde: As above, with 4-hydroxybenzaldehyde (3.00 g, 24.5 mmol), 1-bromodecane (7.62 cm³, 8.12 g, 36.7 mmol) and K_2CO_3 (6.79 g, 49.1 mmol). 4.81 g. (74%).

¹H NMR (400 MHz, CDCl₃): δ = 9.87 (1H, s), 7.82 (2H, AA'XX'), 6.99 (2H, AA'XX'), 4.03 (2H, t, ³J_{HH} = 6.4 Hz), 1.81 (2H, m), 1.46 (2H, m), 1.24 (10H, m), 0.89 (3H, t, ³J_{HH} = 6.8 Hz) ppm.

4-Dodecyloxybenzaldehyde: As above, with 4-hydroxybenzaldehyde (2.92 g, 23.7 mmol), 1-bromododecane (8.85 cm³, 9.19 g, 36.9 mmol) and K_2CO_3 (6.74 g, 48.8 mmol). 3.6 g. (50%).

¹H NMR (400 MHz, CDCl₃): δ = 9.87 (1H, s), 7.82 (2H, AA'XX'), 6.99 (4H, AA'XX'), 4.03 (2H, t, ³J_{HH} = 6.4 Hz), 1.81 (2H, m), 1.46 (2H, m), 1.24 (12H, m), 0.88 (3H, t, ³J_{HH} = 6.8 Hz) ppm.

4-Tetradecyloxybenzaldehyde: As above, with 4-hydroxybenzaldehyde (3.02 g, 24.5 mmol), 1-bromotetradecane (11.0 cm³, 10.3 g, 37.0 mmol) and K_2CO_3 (6.74 g, 48.8 mmol). 4.83 g. (62%).

¹H NMR (400 MHz, CDCl₃): δ = 9.87 (1H, s), 7.82 (2H, AA'XX'), 6.99 (2H, AA'XX'), 4.03 (2H, t, ³J_{HH} = 6.4 Hz), 1.81 (2H, m), 1.46 (2H, m), 1.24 (14H, m), 0.88 (3H, t, ³J_{HH} = 6.8 Hz) ppm.

General Procedure for the Synthesis of 3,4-Bis(alkyloxy)benzaldehyde:

Under an atmosphere of nitrogen, the appropriate 1-bromoalkane (2.2 eq.) was added to a flask of 4-hydroxybenzaldehyde (1.0 eq.) and K_2CO_3 (2.2 eq.), along with a catalytic amount of KI. DMF (70 cm³) was added and the reaction mixture was heated to 90 °C for 16 hours. The reaction mixture was then cooled to room temperature and poured into aqueous 1M HCl. The product was extracted into CH_2Cl_2 , washed with brine, dried over MgSO₄ and the solution concentrated *in vacuo*. The residue was purified by column chromatography on silica gel.

3,4-Bis(octyloxy)benzaldehyde: As above, using 3,4-dihydroxybenzaldehyde (1.52 g, 10.9 mmol), 1-bromooctane (4.21 cm³, 23.3 mmol) and potassium carbonate (3.32 g, 23.9 mmol), using CH₂Cl₂ as the eluent. 2.50 g. (63 %).

¹H NMR (400 MHz, CDCl₃): δ = 9.83 (1H, s), 7.41 (1H, dd, ³J_{HH} = 8.2 Hz, ⁴J_{HH} = 2.0 Hz), 7.39 (1H, m), 6.95 (1H, d, ³J_{HH} = 8.2 Hz), 4.08 (2H, t, ³J_{HH} = 6.5 Hz), 4.05 (2H, t, ³J_{HH} = 6.5 Hz), 1.81 (4H, m), 1.46 (4H, m), 1.28 (16H, m), 0.89 (6H, t, ³J_{HH} = 6.8 Hz) ppm.

3,4-Bis(decyloxy)benzaldehyde: As above, using 3,4-dihydroxybenzaldehyde (1.98 g, 14.5 mmol), 1-bromooctane (7.32 cm³, 35.2 mmol) and potassium carbonate (4.50 g, 32.6 mmol), using petroleum ether (40-60):ethyl acetate as the eluent. 5.91 g. (97 %).

¹H NMR (400 MHz, CDCl₃): δ = 9.82 (1H, s), 7.41 (1H, dd, ³J_{HH} = 8.2 Hz), ⁴J_{HH} = 2.0 Hz), 7.39 (1H, m), 6.95 (1H, d, ³J_{HH} = 8.2 Hz), 4.08 (2H, t, ³J_{HH} = 6.5 Hz), 4.05 (2H, t, ³J_{HH} = 6.5 Hz), 1.81 (4H, m), 1.46 (4H, m), 1.28 (32H, m), 0.89 (6H, t, ³J_{HH} = 6.8 Hz) ppm.

3,4-Bis(dodecyloxy)benzaldehyde: As above, using 3,4-dihydroxybenzaldehyde (2.01 g, 14.5 mmol), 1-bromododecane (7.92 cm³, 31.9 mmol) and potassium carbonate (4.42 g, 31.9 mmol), using hexane:ethyl acetate (85 : 15) as the eluent. 6.71 g. (97 %).

¹H NMR (400 MHz, CDCl₃): δ = 9.82 (1H, s), 7.41 (1H, dd, ³J_{HH} = 8.2 Hz), ⁴J_{HH} = 2.0 Hz), 7.39 (1H, m), 6.95 (1H, d, ³J_{HH} = 8.2 Hz), 4.08 (2H, t, ³J_{HH} = 6.5 Hz), 4.05 (2H, t, ³J_{HH} = 6.5 Hz), 1.81 (4H, m), 1.46 (4H, m), 1.28 (40H, m), 0.89 (6H, t, ³J_{HH} = 6.8 Hz) ppm.

3,4-Bis(tetradecyloxy)benzaldehyde: As above, using 3,4-dihydroxybenzaldehyde (2.00 g, 14.5 mmol), 1-bromotetradecane (9.50 cm³, 31.9 mmol), and potassium carbonate (4.41 g, 31.9 mmol), using hexane– ethyl acetate (85 : 15) as the eluent. 6.20 g (77 %).

¹H NMR (400 MHz, CDCl₃): δ = 9.82 (1H, s), 7.41 (1H, dd, ³J_{HH} = 8.2 Hz), ⁴J_{HH} = 2.0 Hz), 7.39 (1H, m), 6.95 (1H, d, ³J_{HH} = 8.2 Hz), 4.08 (2H, t, ³J_{HH} = 6.5 Hz), 4.05 (2H, t, ³J_{HH} = 6.5 Hz), 1.81 (4H, m), 1.46 (4H, m), 1.28 (48H, m), 0.89 (6H, t, ³J_{HH} = 6.8 Hz) ppm.

Synthesis of 3,4,5-Tris(alkoxy)benzaldehyde from Bromoaryl precursor

5-Bromo-1,2,3-trihydroxybenzene: 5-bromo-1,2,3-trimethoxybenzene (15.0 g, 60.7 mmol) in CH_2Cl_2 (50 cm³) was cooled to -78 °C under an atmosphere of nitrogen. BBr₃ (1M in CH_2Cl_2 , 200 cm³, 200 mmol) was added dropwise and stirred at -78 °C for 1 hour. The solution was warmed to room temperature and stirred for 24 hours. The reaction was quenched with water, and the resulting precipitate removed *via* filtration and washed with CH_2Cl_2 . The filtrate was separated and the aqueous layer washed with ethyl acetate (2 x 35 cm³), brine (35 cm³) and a further portion of ethyl acetate (35 cm³). The organic layers were combined, dried over MgSO₄ and concentrated *in vacuo* to give the product. 12.1 g (97 %).

¹H NMR (400 MHz, CD₃OD): δ = 6.43 (2H, s) ppm; CHN elemental analysis: observed (calculated): %C 35.6 (35.2), %H 2.4 (2.5).

1-Bromo-3,4,5-trioctyloxybenzene: Under an atmosphere of nitrogen, 5-bromo-1,2,3trihydroxybenzene (2.01 g, 9.80 mmol), 1-bromododecane (9.21 cm³, 53.2 mmol) and K₂CO₃ (12.4 g, 89.7 mmol) in DMF was heated to 90 °C for 16 hours. The solution was cooled to room temperature and the product extracted into hexane, dried over MgSO₄ and the solution concentrated *in vacuo* to give a brown oil. The residue was purified flash chromatography on silica gel with CH₂Cl₂/petroleum ether (40-60) as eluent (7:3). 2.89 g (55 %).

¹H NMR (400 MHz, CDCl₃): δ = 6.67 (2H, s), 3.92 (4H, t, ³*J*_{HH} = 6.6 Hz), 3.91 (2H, t, ³*J*_{HH} = 7.2 Hz), 1.78 (4H, m), 1.72 (2H, m), 1.45 (6H, m), 1.26 (24H, broad m), 0.88 (9H, t, ³*J*_{HH} = 7.1 Hz) ppm.

1-Bromo-3,4,5-tridodecyloxybenzene: Under an atmosphere of nitrogen, 5-bromo-1,2,3trihydroxybenzene (2.00 g, 9.81 mmol), 1-bromododecane (14.0 cm³, 47.9 mmol) and K₂CO₃ (12.3 g, 88.9 mmol) in DMF was heated to 90 °C for 16 hours. The solution was cooled to room temperature and the solid isolated by filtration. The solid was washed with water (100 cm³) and acetone (50 cm³) to give the product as an off-white solid which was used without further purification. 6.74 g (95 %).

¹H NMR (400 MHz, CDCl₃): δ = 6.67 (2H, s), 3.93 (4H, t, ³*J*_{HH} = 6.6 Hz), 3.91 (2H, t, ³*J*_{HH} = 7.2 Hz), 1.78 (4H, m), 1.72 (2H, m), 1.45 (6H, m), 1.26 (48H, broad m), 0.88 (9H, t, ³*J*_{HH} = 7.1 Hz) ppm.

General Procedure for Synthesis of 3,4,5-Tris(alkyloxy)benzaldehyde

1-Bromo-3,4,5-trisalkoxybenzene in diethyl ether was cooled to -15 °C under a nitrogen atmosphere. n-BuLi (2.7 M in hexane, 1.0 equiv.) was added dropwise and the solution stirred at -15 °C for 15 minutes. DMF (1.3 equiv.) was added and the reaction mixture warmed to room temperature and stirred for 1 hour, after which HCl (10 %) was added. The solution was separated and the aqueous layer washed with diethyl ether. The organic layers were combined, dried over MgSO₄ and concentrated to give a brown oil.

3,4,5-Tris(octyloxy)benzaldehyde: As above, using 1-bromo-3,4,5-tris(octyloxy)benzene (2.11 g, 3.88 mmol), BuLi (2.7 M in hexane, 1.50 cm³, 3.90 mmol), DMF (0.5 cm³, 6.51 mmol) and HCl (10 %, 6.79 cm³) in diethyl ether (70 cm³). The residue was purified by column chromatography on silica gel with petroleum ether (40-60)/ethyl acetate (9:1) as eluent to give a colourless oil. 911 mg (46 %).

¹H NMR (400 MHz, CDCl₃): δ = 9.83 (1H, s), 7.08 (2H, s), 4.05 (2H, t, ³J_{HH} = 6.6 Hz), 4.03 (4H, t, ³J_{HH} = 6.6 Hz), 1.82 (4H, m), 1.75 (2H, m), 1.47 (6H, m), 1.26 (24H, broad m), 0.87 (9H, m) ppm.

3,4,5-Tris(dodecyloxy)benzaldehyde: As above, using 1-bromo-3,4,5-tris(dodecyloxy)benzene (3.68 g, 5.10 mmol), n-BuLi (2.7 M in hexane, 1.9 cm³, 5.13 mmol), DMF (0.7 cm³, 9.0 mmol) and HCl (10 %, 9.0 cm³) in diethyl ether (100 cm³). The brown oil crystallised on standing. The residue was purified by column chromatography on silica gel with petroleum ether (40-60)/ethyl acetate (95:5) as eluent to give a colourless oil which crystallised on standing to give a white amorphous solid. 2.61 g (76 %).

¹H NMR (400 MHz, CDCl₃): δ = 9.82 (1H, s), 7.08 (2H, s), 4.05 (2H, t, ³J_{HH} = 6.8 Hz), 4.03 (4H, t, ³J_{HH} = 6.5 Hz), 1.82 (4H, m), 1.75 (2H, m), 1.47 (6H, m), 1.26 (48H, broad m), 0.87 (9H, m) ppm; CHN elemental analysis: observed (calculated): %C 78.2 (78.4), %H 11.9 (11.9).

General Procedure for Synthesis of Methyl 3,4,5-Tris(alkoxy)benzoate

Methyl 3,4,5-trihydroxybenzoate and K_2CO_3 (3.3 equiv.) were heated to reflux in 2-pentanone (80 cm³). 1-bromoalkane was added and the mixture heated for 24 hours at reflux. The reaction

mixture was cooled to room temperature, filtered through a pad of Celite[®] and the filtrate concentrated *in vacuo*.

Methyl 3,4,5-tris(decyloxy)benzoate: As above, using methyl 3,4,5-trihydroxybenzoate (3.09 g, 16.8 mmol), 1-bromodecane (11.9 cm³, 56.8 mmol) and K_2CO_3 (13.5 g, 96.9 mmol). The brown residue was purified by column chromatography on silica gel with CH_2Cl_2 as the eluent to give a colourless oil. 6.02 g (46 %).

¹H NMR (400 MHz, CDCl₃): δ = 7.25 (2H, s), 4.01 (2H, t, ³J_{HH} = 6.6 Hz), 4.01 (4H, t, ³J_{HH} = 6.6 Hz), 1.80 (4H, m), 1.74 (2H, m), 1.46 (6H, m), 1.26 (36H, broad m), 0.88 (9H, t, ³J_{HH} = 6.9 Hz) ppm.

Methyl 3,4,5-tris(tetradecyloxy)benzoate: As above, using methyl 3,4,5-trihydroxybenzoate (3.10 g, 16.8 mmol), 1-bromotetradecane (16.5 cm³, 55.4 mmol) and K₂CO₃ (13.4 g, 97.8 mmol). The brown residue was crystallised from ethanol to give a colourless solid. 3.31 g (34 %) ppm.

¹H NMR (400 MHz, CDCl₃): δ = 7.25 (2H, s), 4.00 (6H, t, ³J_{HH} = 6.6 Hz), 1.80 (4H, m), 1.73 (2H, m), 1.46 (6H, m), 1.26 (60H, broad m), 0.88 (9H, t, ³J_{HH} = 6.9 Hz).

General Procedure for Synthesis of 3,4,5-Trialkoxybenzyl Alcohol

Under at atmosphere of dinitrogen, methyl 3,4,5-trialkoxybenzoate was dissolved in dry THF and the mixture cooled to 0 °C. Lithium aluminium hydride (1M in THF, 1 equiv.) was added dropwise with stirring and the mixture was allowed to slowly warm to room temperature and stirred for 16 hours. The reaction was quenched with ethyl acetate (20 cm³), followed by ethanol (20 cm³) and water (20 cm³). The volatiles were removed *in vacuo*, the product extracted with CH₂Cl₂, washed with water and dried over MgSO₄. The solvent was removed *in vacuo* to give a light brown oil.

3,4,5-Tris(decyloxy)benzyl alcohol: As above, with methyl 3,4,5-tris(decyloxy)benzoate (5.87 g, 9.68 mmol) and lithium aluminium hydride (1M in THF, 10.0 cm³, 10.0 mmol) in THF (100 cm³). The residue was crystallised from hexane to give a colourless solid. 2.86 g (52 %).

¹H NMR (400 MHz, CDCl₃): δ = 6.56 (2H, s), 4.59 (2H, d, ³J_{HH} = 6.0 Hz) 3.97 (4H, t, ³J_{HH} = 6.6 Hz), 3.93 (2H, t, ³J_{HH} = 6.6 Hz), 1.80 (4H, m), 1.74 (2H, m), 1.46 (6H, m), 1.26 (36H, broad m), 0.88 (9H, t, ³J_{HH} = 6.9 Hz) ppm.

3,4,5-Tris(tetradecyloxy)benzyl alcohol: As above, with methyl 3,4,5-

tris(tetradecyloxy)benzoate (2.27 g, 2.91 mmol) and lithium aluminium hydride (1M in THF, 2.90 cm³, 2.89 mmol) in THF (50 cm³). The residue was crystallised from ethanol to give a colourless solid. 1.05 g (49 %).

¹H NMR (400 MHz, CDCl₃): δ = 6.56 (2H, s), 4.59 (2H, d, ³J_{HH} = 6.0 Hz) 3.97 (4H, t, ³J_{HH} = 6.6 Hz), 3.93 (2H, t, ³J_{HH} = 6.6 Hz), 1.80 (4H, m), 1.74 (2H, m), 1.46 (6H, m), 1.26 (60H, broad m), 0.88 (9H, t, ³J_{HH} = 6.9 Hz) ppm.

General Procedure for Synthesis of 3,4,5-Tris(alkoxy)benzaldehyde from the Methyl Ester

3,4,5-Trialkoxybenzyl alcohol was dissolved in CH₂Cl₂. Manganese dioxide (10.0 equiv.), was added and the mixture stirred at room temperature for 36 hours. MgSO₄ was added and the mixture stirred for 15 minutes. The solution was filtered through Celite[®] and the filtrate concentrated *in vacuo* to give a light yellow oil.

3,4,5-Tris(decyloxy)benzaldehyde: As above, using 3,4,5-tris(decyloxy)benzyl alcohol (2.77 g, 4.81 mmol) and manganese dioxide (4.21 g, 48.3 mmol) in CH₂Cl₂ (130 cm³). The residue was purified by column chromatography on silica gel using CH₂Cl₂ as the eluent to give a colourless oil. 2.41 g (88 %).

¹H NMR (400 MHz, CDCl₃): δ = 9.83 (1H, s), 7.08 (2H, s), 4.05 (2H, t, ³J_{HH} = 6.8 Hz), 4.03 (4H, t, ³J_{HH} = 6.5 Hz), 1.82 (4H, m), 1.75 (2H, m), 1.47 (6H, m), 1.26 (36H, broad m), 0.88 (9H, t, ³J_{HH} = 6.9 Hz).

3,4,5-Tris(tetradecyloxy)benzaldehyde: As above, using 3,4,5-tris(tetradecyloxy)benzyl alcohol (952 mg, 1.31 mmol) and manganese dioxide (1.11 g, 12.7 mmol) in CH₂Cl₂ (100 cm³). The residue was crystallised from acetone to give a colourless, waxy solid. 923 mg (97 %).

¹H NMR (400 MHz, CDCl₃): δ = 9.83 (1H, s), 7.08 (2H, s), 4.05 (2H, t, ³J_{HH} = 6.8 Hz), 4.03 (4H, t, ³J_{HH} = 6.5 Hz), 1.82 (4H, m), 1.75 (2H, m), 1.47 (6H, m), 1.26 (60H, broad m), 0.88 (9H, t, ³J_{HH} = 6.9 Hz) ppm.

General Procedure for Synthesis of 4-(2,2-dibromovinyl)-1-(alkyloxy)benzene, 4-(2,2dibromovinyl)-1,2-bis(alkyloxy)benzene and 5-(2,2-dibromovinyl)-1,2,3-tris(alkyloxy)benzene:

Under a nitrogen atmosphere and cooled in an ice bath to 0 °C, a solution of tetrabromomethane (1.3 equiv.) in CH₂Cl₂ (20 cm³) was added to a solution of triphenylphosphine (2.6 equiv.) in CH₂Cl₂ (60 cm³), with the temperature maintained below 15 °C. After full addition the mixture was cooled again to 0 °C. A solution of the appropriate (alkyloxy)benzaldehyde and triethylamine (1.0 equiv.) in CH₂Cl₂ was added dropwise and the mixture stirred for 30 minutes. The mixture was warmed to room temperature and poured into hexane (100 cm³). The mixture was filtered through a Celite[®] plug and the filtrate concentrated *in vacuo* to give a brown oil which was purified by column chromatography on silica gel.

4-(2,2-Dibromovinyl)-1-(alkyloxy)benzene:

4-(2,2-Dibromovinyl)-1-(octyloxy)benzene: As above, with 4-octyloxybenzaldehyde (4.38 g, 18.8 mmol) in CH₂Cl₂ (40 cm³), triphenylphosphine (12.9 g, 49.2 mmol) and tetrabromomethane (8.09 g, 24.4 mmol), purified with 7:3 petroleum ether(40-60):DCM as eluent. 3.36 g. (46%).

¹H NMR (400 MHz, CDCl₃): δ = 7.50 (2H, AA'XX'), 7.40 (1H, s), 6.87 (2H, AA'XX'), 3.96 (2H, t, ³J_{HH} = 6.4 Hz), 1.81 (2H, m), 1.46 (2H, m), 1.24 (8H, m), 0.89 (3H, t, ³J_{HH} = 6.8 Hz) ppm.

4-(2,2-Dibromovinyl)-1-(decyloxy)benzene: As above, with 4-decyloxybenzaldehyde (4.47 g, 17.2 mmol) in CH₂Cl₂ (40 cm³), triphenylphosphine (12.1 g, 46.1 mmol) and tetrabromomethane (7.61 g, 22.9 mmol), purified with 7:3 petroleum ether(40-60):DCM as eluent. 5.87 g. (82%).

¹H NMR (400 MHz, CDCl₃): δ = 7.49 (4H, AA'XX'), 7.40 (1H, s), 6.87 (4H, AA'XX'), 3.96 (2H, t, ³J_{HH} = 6.4 Hz), 1.81 (2H, m), 1.46 (2H, m), 1.24 (10H, m), 0.89 (3H, t, ³J_{HH} = 6.8 Hz) ppm.

4-(2,2-Dibromovinyl)-1-(dodecyloxy)benzene: As above, with 4-dodecyloxybenzaldehyde (3.59 g, 12.4 mmol) in CH₂Cl₂ (30 cm³), triphenylphosphine (8.50 g, 32.4 mmol) and tetrabromomethane (5.28 g, 16.0 mmol), purified with 7:3 petroleum ether(40-60):DCM as eluent. 4.90 g. (89%).

¹H NMR (400 MHz, CDCl₃): δ = 7.49 (2H, AA'XX'), 7.40 (1H, s), 6.87 (2H, AA'XX'), 3.96 (2H, t, ³J_{HH} = 6.4 Hz), 1.81 (2H, m), 1.46 (2H, m), 1.24 (12H, m), 0.89 (3H, t, ³J_{HH} = 6.8 Hz) ppm.

4-(2,2-Dibromovinyl)-1-(tetradecyloxy)benzene: As above, with 4-tetradecyloxybenzaldehyde (4.81 g, 15.2 mmol) in CH_2Cl_2 (40 cm³), triphenylphosphine (10.3 g, 39.3 mmol) and tetrabromomethane (6.58 g, 20.0 mmol), purified with 7:3 petroleum ether(40-60):DCM as eluent. 5.39 g. (76%).

¹H NMR (400 MHz, CDCl₃): δ = 7.49 (2H, AA'XX'), 7.40 (1H, s), 6.87 (2H, AA'XX'), 3.96 (2H, t, ³J_{HH} = 6.4 Hz), 1.81 (2H, m), 1.46 (2H, m), 1.24 (14H, m), 0.89 (3H, t, ³J_{HH} = 6.8 Hz) ppm.

4-(2,2-Dibromovinyl)-1,2-bis(octyloxy)benzene:

4-(2,2-Dibromovinyl)-1,2-bis(octyloxy)benzene: As above, with 3,4-bis(octyloxy)benzaldehyde (3.40 g, 9.39 mmol) in CH₂Cl₂ (40 cm³), triphenylphosphine (6.51 g, 24.8 mmol) and carbon tetrabromide (4.09 g, 12.4 mmol), purified using petroleum ether:CH₂Cl₂ (1:1) as the eluent. Yield: 4.28 g (88%).

¹H NMR (400 MHz, CDCl₃): δ = 7.38 (1H, s), 7.19 (1H, d, ⁴*J*_{HH} = 2.0 Hz), 7.06 (1H, dd, ³*J*_{HH} = 8.4 Hz, ⁴*J*_{HH} = 2.0 Hz), 6.84 (1H, d, ³*J*_{HH} = 8.4 Hz), 4.00 (2H, t, ³*J*_{HH} = 6.6 Hz), 3.99 (2H, t, ³*J*_{HH} = 6.6 Hz), 1.81 (4H, m), 1.46 (4H, m), 1.28 (16H, m), 0.89 (6H, t, ³*J*_{HH} = 6.8 Hz) ppm.

4-(2,2-Dibromovinyl)-1,2-bis(decyloxy)benzene: As above, with 3,4-bis(decyloxy)benzaldehyde (6.01 g, 14.3 mmol) in CH₂Cl₂ (40 cm³), triphenylphosphine (9.79 g, 37.4 mmol) and carbon tetrabromide (6.21 g, 18.7 mmol), purified using petroleum ether:CH₂Cl₂ (1:1) as the eluent. Yield: 6.34 g (77 %).

¹H NMR (400 MHz, CDCl₃): δ = 7.38 (1H, s), 7.18 (1H, d, ⁴*J*_{HH} = 2.0 Hz), 7.05 (1H, dd, ³*J*_{HH} = 8.4 Hz, ⁴*J*_{HH} = 2.0 Hz), 6.84 (1H, d, ³*J*_{HH} = 8.4 Hz), 4.00 (2H, t, ³*J*_{HH} = 6.6 Hz), 3.99 (2H, t, ³*J*_{HH} = 6.6 Hz), 1.81 (4H, m), 1.46 (4H, m), 1.28 (24H, m), 0.89 (6H, t, ³*J*_{HH} = 6.8 Hz) ppm.

4-(2,2-Dibromovinyl)-1,2-bis(dodecyloxy)benzene: As above, with 3,4-

bis(dodecyloxy)benzaldehyde (5.01 g, 10.5 mmol) in CH_2Cl_2 (40 cm³), triphenylphosphine (7.17 g, 27.4 mmol) and carbon tetrabromide (4.50 g, 13.7 mmol), purified using petroleum ether: CH_2Cl_2 (1:1) as the eluent. Yield: 5.46 g (82 %).

¹H NMR (400 MHz, CDCl₃): δ = 7.38 (1H, s), 7.18 (1H, d, ⁴*J*_{HH} = 2.0 Hz), 7.05 (1H, dd, ³*J*_{HH} = 8.4 Hz, ⁴*J*_{HH} = 2.0 Hz), 6.84 (1H, d, ³*J*_{HH} = 8.4 Hz), 4.00 (2H, t, ³*J*_{HH} = 6.6 Hz), 3.99 (2H, t, ³*J*_{HH} = 6.6 Hz), 1.81 (4H, m), 1.46 (4H, m), 1.28 (32H, m), 0.89 (6H, t, ³*J*_{HH} = 6.8 Hz) ppm.

4-(2,2-Dibromovinyl)-1,2-bis(tetradecyloxy)benzene: As above, with 3,4-

bis(decyloxy)benzaldehyde (5.01 g, 9.42 mmol) in CH_2Cl_2 (40 cm³), triphenylphosphine (6.42 g, 24.5 mmol) and carbon tetrabromide (4.06 g, 12.2 mmol), purified using petroleum ether: CH_2Cl_2 (1:1) as the eluent. The residue was crystallised from ethyl acetate to give a colourless solid. Yield: 4.04 g (24 %).

¹H NMR (400 MHz, CDCl₃): δ = 7.38 (1H, s), 7.18 (1H, d, ⁴*J*_{HH} = 2.0 Hz), 7.05 (1H, dd, ³*J*_{HH} = 8.4 Hz, ⁴*J*_{HH} = 2.0 Hz), 6.84 (1H, d, ³*J*_{HH} = 8.4 Hz), 4.00 (2H, t, ³*J*_{HH} = 6.6 Hz), 3.99 (2H, t, ³*J*_{HH} = 6.6 Hz), 1.81 (4H, m), 1.46 (4H, m), 1.28 (40H, m), 0.89 (6H, t, ³*J*_{HH} = 6.8 Hz) ppm.

5-(2,2-Dibromovinyl)-1,2,3-tris(alkyloxy)benzene:

5-(2,2-Dibromovinyl)-1,2,3-tris(octyloxy)benzene: As above, using tetrabromomethane (527 mg, 1.60 mmol), triphenylphosphine (837 mg, 3.21 mmol) and 3,4,5-tris(octyloxy)benzaldehyde (602 mg, 1.21 mmol) in CH₂Cl₂ (25 cm³). The residue was purified by column chromatography on silica gel using CH₂Cl₂/ petroleum ether (40-60) (1:1) to give a colourless solid. 650 mg (82 %).

¹H NMR (400 MHz, CDCl₃): δ = 7.37 (1H, s), 6.76 (2H, s), 3.96 (2H, t, ³J_{HH} = 6.6 Hz), 3.96 (4H, t, ³J_{HH} = 6.6 Hz), 1.79 (4H, m), 1.73 (2H, m), 1.46 (6H, m), 1.26 (24H, broad m), 0.88 (9H, t, ³J_{HH} = 7.0 Hz) ppm.

5-(2,2-Dibromovinyl)-1,2,3-tris(decyloxy)benzene: As above, using tetrabromomethane (1.65 g, 5.01 mmol), triphenylphosphine (2.61 g, 10.0 mmol) and 3,4,5-tris(decyloxy)benzaldehyde (2.21 g, 3.19 mmol) in CH_2Cl_2 (30 cm³). The residue was purified by column chromatography on silica gel using petroleum ether (40-60)/ethyl acetate (9:1) to give a colourless solid. 2.28 g (82 %).

¹H NMR (400 MHz, CDCl₃): δ = 7.37 (1H, s), 6.76 (2H, s), 3.97 (2H, t, ³J_{HH} = 6.6 Hz), 3.96 (4H, t, ³J_{HH} = 6.6 Hz), 1.79 (4H, m), 1.73 (2H, m), 1.46 (6H, m), 1.26 (36H, broad m), 0.88 (9H, t, ³J_{HH} = 7.0 Hz) ppm.

5-(2,2-Dibromovinyl)-1,2,3-tris(dodecyloxy)benzene: As above, using tetrabromomethane (3.21 g, 9.59 mmol), triphenylphosphine (5.09 g, 19.4 mmol) and 3,4,5-

tris(dodecyloxy)benzaldehyde (2.00 g, 4.20 mmol) in CH_2Cl_2 (30 cm³). The residue was purified by column chromatography on silica gel using CH_2Cl_2 / petroleum ether (40-60) (1:1) to give a colourless solid. 1.19 g (48 %).

¹H NMR (400 MHz, CDCl₃): δ = 7.37 (1H, s), 6.76 (2H, s), 3.96 (2H, t, ³J_{HH} = 6.5 Hz), 3.96 (4H, t, ³J_{HH} = 6.5 Hz), 1.79 (4H, m), 1.73 (2H, m), 1.46 (6H, m), 1.26 (48H, broad m), 0.88 (9H, t, ³J_{HH} = 7.0 Hz). CHN elemental analysis: observed (calculated) ppm: %C 64.7 (64.9), %H 9.7 (9.7).

5-(2,2-Dibromovinyl)-1,2,3-tris(tetradecyloxy)benzene: As above, using tetrabromomethane (506 mg, 1.50 mmol), triphenylphosphine (809 mg, 3.12 mmol) and 3,4,5-tris(tetradecyloxy)benzaldehyde (882 mg, 1.22 mmol) in CH₂Cl₂ (25 cm³). The residue was purified by column chromatography on silica gel using CH₂Cl₂/ petroleum ether (40-60) (1:1) to give a colourless solid. 854 mg (81 %).

¹H NMR (400 MHz, CDCl₃): δ = 7.37 (1H, s), 6.76 (2H, s), 3.96 (2H, t, ³J_{HH} = 6.5 Hz), 3.96 (4H, t, ³J_{HH} = 6.5 Hz), 1.79 (4H, m), 1.73 (2H, m), 1.46 (6H, m), 1.26 (60H, broad m), 0.88 (9H, t, ³J_{HH} = 7.0 Hz) ppm.

General Procedure for Synthesis of 1-alkoxy-4-ethynylbenzene, 1,2,-bis(alkoxy)-4ethynylbenzene and 1,2,3-tris(alkoxy)-5-ethynylbenzene:

Under an atmosphere of nitrogen, ethylmagnesium bromide (3M solution in THF) was added dropwise to a solution of the appropriate 2,2-dibromovinyl(alkoxy)benzene in dry THF (60 cm³). The mixture was stirred for 30 minutes at room temperature, followed by addition of solid ammonium chloride (excess). The solution was poured into hexane (50 cm³) and filtered through a pad of Celite[®]. The solvent was removed from the filtrate *in vacuo* and the residue purified by column chromatography on silica gel.

1-Alkoxy-4-ethynylbenzene:

4-Ethynyl-1-(octyloxy)benzene: As above, using 4-(2,2-dibromovinyl)-1-(octyloxy)benzene (3.21 g, 8.21 mmol) and ethylmagnesium bromide (3M solution in THF) (5.3 cm³, 15.9 mmol), purified using 1:1 petroleum ether(40-60):CH₂Cl₂. 1.62 g. (86%).

¹H NMR (400 MHz, CDCl₃): δ = 7.41 (4H, AA'XX'), 6.82 (4H, AA'XX'), 3.95 (2H, t, ³J_{HH} = 6.4 Hz), 2.99 (1H, s), 1.81 (2H, m), 1.46 (2H, m), 1.24 (8H, m), 0.89 (3H, t, ³J_{HH} = 6.8 Hz); CHN elemental analysis: observed (calculated): %C 83.5 (83.4), %H 9.7 (9.6) ppm.

4-Ethynyl-1-(decyloxy)benzene: As above, using 4-(2,2-dibromovinyl)-1-(decyloxy)benzene (5.61 g, 13.4 mmol) and ethylmagnesium bromide (3M solution in THF) (8.9 cm³, 26.7 mmol), purified using 1:1 petroleum ether(40-60):CH₂Cl₂. 2.71 g. (62%).

¹H NMR (400 MHz, CDCl₃): δ = 7.41 (4H, AA'XX'), 6.82 (4H, AA'XX'), 3.95 (2H, t, ³J_{HH} = 6.4 Hz), 2.99 (1H, s), 1.81 (2H, m), 1.46 (2H, m), 1.24 (10H, m), 0.89 (3H, t, ³J_{HH} = 6.8 Hz); CHN elemental analysis: observed (calculated) ppm: %C 83.3 (83.7), %H 10.1 (10.1)

4-Ethynyl-1-(dodecyloxy)benzene: As above, using 4-(2,2-dibromovinyl)-1-

(dodecyloxy)benzene (4.09 g, 9.20 mmol) and ethylmagnesium bromide (3M solution in THF) (6.2 cm³, 18.6 mmol), purified using 1:1 petroleum ether(40-60):CH₂Cl₂. 2.52 g. (96%).

¹H NMR (400 MHz, CDCl₃): δ = 7.41 (4H, AA'XX'), 6.82 (4H, AA'XX'), 3.95 (2H, t, ³J_{HH} = 6.4 Hz), 2.99 (1H, s), 1.81 (2H, m), 1.46 (2H, m), 1.24 (12H, m), 0.89 (3H, t, ³J_{HH} = 6.8 Hz) ppm; CHN elemental analysis: observed (calculated): %C 83.6 (83.9), %H 10.4 (10.6).

4-Ethynyl-1-(tetradecyloxy)benzene: As above, using 4-(2,2-dibromovinyl)-1-

(tetradecyloxy)benzene (4.90 g, 10.4 mmol) and ethylmagnesium bromide (3M solution in THF) (6.9 cm³, 20.7 mmol), purified using 1:1 petroleum ether(40-60):CH₂Cl₂. 2.91 g. (89%).

¹H NMR (400 MHz, CDCl₃): δ = 7.41 (4H, AA'XX'), 6.82 (4H, AA'XX'), 3.95 (2H, t, ³J_{HH} = 6.4 Hz), 2.99 (1H, s), 1.81 (2H, m), 1.46 (2H, m), 1.24 (14H, m), 0.89 (3H, t, ³J_{HH} = 6.8 Hz) ppm; CHN elemental analysis: observed (calculated): %C 84.1 (84.0), %H 11.2 (10.9).

4-Ethynyl-1,2-bis(alkyloxy)benzene:

4-Ethynyl-1,2-bis(octyloxy)benzene: As above, using 4-(2,2-dibromovinyl)-1,2bis(octyloxy)benzene (3.01 g, 5.82 mmol) and EtMgBr (3 M solution in ether) (3.9 cm³, 11.7 mmol), purified using CH₂Cl₂ as eluent. 1.50 g (72%).

¹H NMR (400 MHz, CDCl₃): δ = 7.05 (1H, dd, ³J_{HH} = 8.2, ⁴J_{HH} = 2.0 Hz), 6.99 (1H, d, ⁴J_{HH} = 2.0 Hz), 6.79 (1H, d, ³J_{HH} = 8.2 Hz), 3.99 (2H, t, ³J_{HH} = 6.7 Hz), 3.97 (2H, t, ³J_{HH} = 6.7 Hz), 2.98 (1H, s), 1.81 (4H, m), 1.46 (4H, m), 1.28 (16H, m), 0.89 (6H, t, ³J_{HH} = 6.8 Hz) ppm.

4-Ethynyl-1,2-bis(decyloxy)benzene: As above, using 4-(2,2-dibromovinyl)-1,2bis(decyloxy)benzene (5.99 g, 10.4 mmol) and EtMgBr (3 M solution in ether) (7.0 cm³, 20.9 mmol), purified using 7:3 petroleum ether (40-60):CH₂Cl₂ as eluent. 3.61 g (83%).

¹H NMR (400 MHz, CDCl₃): δ = 7.05 (1H, dd, ³J_{HH} = 8.2, ⁴J_{HH} = 2.0 Hz), 6.99 (1H, d, ⁴J_{HH} = 2.0 Hz), 6.79 (1H, d, ³J_{HH} = 8.2 Hz), 3.99 (2H, t, ³J_{HH} = 6.7 Hz), 3.97 (2H, t, ³J_{HH} = 6.7 Hz), 2.98 (1H, s), 1.81 (4H, m), 1.46 (4H, m), 1.28 (24H, m), 0.89 (6H, t, ³J_{HH} = 6.8 Hz) ppm.

4-Ethynyl-1,2-bis(dodecyloxy)benzene: As above, using 4-(2,2-dibromovinyl)-1,2-bis(dodecyloxy)benzene (4.51 g, 7.12 mmol) and EtMgBr (3 M solution in ether) (4.8 cm³, 14.4

mmol), purified using CH_2Cl_2 as eluent. 3.10 g (93%).

¹H NMR (400 MHz, CDCl₃): δ = 7.05 (1H, dd, ³J_{HH} = 8.2, ⁴J_{HH} = 2.0 Hz), 6.99 (1H, d, ⁴J_{HH} = 2.0 Hz), 6.79 (1H, d, ³J_{HH} = 8.2 Hz), 3.99 (2H, t, ³J_{HH} = 6.7 Hz), 3.97 (2H, t, ³J_{HH} = 6.7 Hz), 2.98 (1H, s), 1.81 (4H, m), 1.46 (4H, m), 1.28 (32H, m), 0.89 (6H, t, ³J_{HH} = 6.8 Hz) ppm.

4-Ethynyl-1,2-bis(tetradecyloxy)benzene: As above, using 4-(2,2-dibromovinyl)-1,2-bis(tetradecyloxy)benzene (3.00 g, 4.37 mmol) and EtMgBr (3 M solution in ether) (2.9 cm³, 8.69 mmol), purified using CH₂Cl₂ as eluent. 2.21 g (93%).

¹H NMR (400 MHz, CDCl₃): δ = 7.05 (1H, dd, ³J_{HH} = 8.2, ⁴J_{HH} = 2.0 Hz), 6.99 (1H, d, ⁴J_{HH} = 2.0 Hz), 6.79 (1H, d, ³J_{HH} = 8.2 Hz), 3.99 (2H, t, ³J_{HH} = 6.7 Hz), 3.97 (2H, t, ³J_{HH} = 6.7 Hz), 2.98 (1H, s), 1.81 (4H, m), 1.46 (4H, m), 1.28 (40H, m), 0.89 (6H, t, ³J_{HH} = 6.8 Hz) ppm.

5-Ethynyl-1,2,3-tris(alkyloxy)benzene:

5-Ethynyl-1,2,3-tris(octyloxy)benzene: As above, using 5-(2,2-dibromovinyl)-1,2,3-tris(octyloxy)benzene (452 mg, 703 μmol) and ethylmagnesium bromide (3M solution in ether) (0.6 cm³, 1.80 mmol), purified using petroleum ether(40-60)/CH₂Cl₂ (7:3) as eluent to give a

light yellow oil. 254 mg (75 %).

¹H NMR (400 MHz, CDCl₃): δ = 6.69 (2H, s), 3.95 (2H, t, ³J_{HH} = 6.5 Hz), 3.94 (4H, t, ³J_{HH} = 6.5 Hz), 2.99 (1H, s), 1.79 (4H, m), 1.73 (2H, m), 1.46 (6H, m), 1.26 (24H, broad m), 0.88 (9H, t, ³J_{HH} = 7.0 Hz) ppm.

5-Ethynyl-1,2,3-tris(decyloxy)benzene: As above, using 5-(2,2-dibromovinyl)-1,2,3-tris(decyloxy)benzene (1.89 g, 2.61 mmol) and ethylmagnesium bromide (3M solution in ether) (0.86 cm³, 2.60 mmol), purified using petroleum ether(40-60)/CH₂Cl₂ (9:1) as eluent to give a colourless solid. 1.10 g (76 %).

¹H NMR (400 MHz, CDCl₃): δ = 6.69 (2H, s), 3.95 (2H, t, ³J_{HH} = 6.5 Hz), 3.94 (4H, t, ³J_{HH} = 6.5 Hz), 2.99 (1H, s), 1.79 (4H, m), 1.73 (2H, m), 1.46 (6H, m), 1.26 (36H, broad m), 0.88 (9H, t, ³J_{HH} = 7.0 Hz) ppm.

5-Ethynyl-1,2,3-tris(dodecyloxy)benzene: As above, using 5-(2,2-dibromovinyl)-1,2,3-tris(dodecyloxy)benzene (1.32 g, 2.11 mmol) and ethylmagnesium bromide (3M solution in

ether) (0.8 cm³, 2.40 mmol), purified using petroleum ether(40-60)/CH₂Cl₂ (7:3) as eluent to give a colourless solid. 292 mg (34 %).

¹H NMR (400 MHz, CDCl₃): δ = 6.69 (2H, s), 3.95 (2H, t, ³J_{HH} = 6.5 Hz), 3.94 (4H, t, ³J_{HH} = 6.5 Hz), 2.99 (1H, s), 1.79 (4H, m), 1.73 (2H, m), 1.46 (6H, m), 1.26 (48H, broad m), 0.88 (9H, t, ³J_{HH} = 7.0 Hz) ppm. CHN elemental analysis: observed (calculated): %C 80.5 (80.7), %H 12.1 (12.0)

5-Ethynyl-1,2,3-tris(tetradecyloxy)benzene: As above, using 5-(2,2-dibromovinyl)-1,2,3-tris(tetradecyloxy)benzene (893 mg, 1.02 mmol) and ethylmagnesium bromide (3M solution in ether) (0.66 cm³, 2.02 mmol), purified using petroleum ether(40-60)/CH₂Cl₂ (7:3) as eluent to give a colourless solid. 411 mg (57 %).

¹H NMR (400 MHz, CDCl₃): δ = 6.69 (2H, s), 3.95 (2H, t, ³J_{HH} = 6.5 Hz), 3.94 (4H, t, ³J_{HH} = 6.5 Hz), 2.99 (1H, s), 1.79 (4H, m), 1.73 (2H, m), 1.46 (6H, m), 1.26 (60H, broad m), 0.88 (9H, t, ³J_{HH} = 7.0 Hz) ppm.

Chlorogold(III) Complexes

5: Hg(OAc)₂ (5.02 g, 15.7 mmol) and 2,6-bis(4-(dodecyloxy)phenyl)pyridine (1.88 g, 3.31 mmol) were heated under vigorous reflux in ethanol (500 cm³) for 24 hours. The solution was cooled to 50 °C and a solution of LiCl (265 mg, 6.20 mmol) in methanol (50 cm³) was added. The resulting mixture was allowed to stir for 15 min. The reaction mixture cooled to room temperature and was then added to distilled water (200 cm³) and filtered. The precipitate was washed with copious amounts of water and air-dried. The dried precipitate was dissolved in the minimum amount of boiling CHCl₃ and filtered through Celite^{*}, after which the solvent was removed from the filtrate under reduced pressure. The residue was crystallised from CHCl₃ and acetone, the resulting precipitate removed *via* filtration and the filtrate concentrated *in vacuo*. The residue used without further purification. K[AuCl₄] (800 mg, 2.12 mmol) and the mixed product (2.81 g, 73.5% estimated **4**) were heated in acetonitrile (400 cm³) under reflux for 24 hours. The reaction mixture was then cooled and added to distilled water (150 cm³) and isolated by filtration. The solid was washed with acetone (50 cm³) and air-dried. The product was further purified by flash chromatography on silica gel using petroleum ether/chloroform as eluent (3:2), and crystallised from CH₂/₂/ethyl acetate. 674 mg (26%).

¹H NMR (400 MHz, CDCl₃): δ = 7.69 (1H, t, ³J_{HH} = 8.0 Hz), 7.43 (2H, d, ⁴J_{HH} = 2.8 Hz), 7.42 (2H, d, ³J_{HH} = 8.4 Hz), 7.16 (2H, d, ³J_{HH} = 8.0 Hz), 6.7 (2H, dd, ³J_{HH} = 8.4 Hz, ⁴J_{HH} = 2.4 Hz), 4.05 (4H, t, ³J_{HH})

= 6.4 Hz), 1.79 (4H, m), 1.47 (4H, m), 1.21 (32H, broad m), 0.87 (6H, t, ³J_{HH} = 7.2 Hz) ppm; CHN elemental analysis: observed (calculated): %C 59.0 (59.3), %H 7.1 (7.2), %N 1.5 (1.7).

14: Hg(OAc)₂ (10.5 g, 32.9 mmol) and 2,6-bis(3,4-bis(dodecyloxy)phenylpyridine (8.02 g, 8.19 mmol) were heated under vigorous reflux in ethanol (500 cm³) for 24 hours. The solution was cooled to 50 °C and a solution of LiCl (265 mg, 6.21 mmol) in methanol (50 cm³) was added. The resulting mixture was allowed to stir for 15 min. The reaction mixture was then cooled to room temperature and added to distilled water (200 cm³) and filtered. The precipitate was washed with copious amounts of water and air-dried. The mercurated complex, **4**, was used without further purification. K[AuCl₄] (720 mg, 2.11 mmol) and the mixed product (2.40 g) were heated in an acetonitrile/chloroform (1:1) mixture (400 cm³) under reflux for 24 hours. The reaction mixture was cooled and concentrated *in vacuo*. The residue was treated with acetonitrile and the insoluble material isolated *via* filtration. The solid was crystallised from CH₂Cl₂ and the resulting solid isolated by filtration, then further crystallised from CH₂Cl₂ and hexane resulting in the pure product as a vibrantly yellow solid. 1.29 g (13%).

¹H NMR (400 MHz, CDCl₃): δ = 7.65 (1H, t, ³J_{HH} = 8.0 Hz), 7.38 (2H, s), 7.06 (2H, d, ³J_{HH} = 8.0 Hz), 6.99 (2H, s), 4.13 (4H, t, ³J_{HH} = 6.4 Hz), 3.98 (4H, t, ³J_{HH} = 6.8 Hz), 1.79 (8H, m), 1.47 (8H, m), 1.21 (64H, broad m), 0.87 (12H, t, ³J_{HH} = 7.2 Hz) ppm; CHN elemental analysis: observed (calculated): %C 65.1 (64.8), %H 9.2 (9.0), %N 1.1 (1.2).

General Procedure for Gold(III) Alkynyl Complexes

The [Au(C^N^C)Cl] precursor (5 or 16) and Cul (10 mol%) were added to a 3-necked flask which was placed under N₂. Dry, degassed dichloromethane (40 cm³) was added, followed by the appropriate acetylene (2.5 eq.) and triethylamine (45 mol%). The reaction mixture was stirred at room temperature for 5 h under a N₂ atmosphere, after which the reaction mixture was filtered through a pad of Celite and the solvent was removed *in vacuo*. The residue was purified by flash chromatography on silica gel and subsequently crystallised from acetone or CHCl₃/acetonitrile.

6a: As above, using **5** (302 mg, 63 μ mol) and phenylacetylene (0.06 cm³, 542 μ mol), purified using petroleum ether/ethyl acetate as eluent (4:1), crystallised from CHCl₃/acetonitrile. 247 mg (77%).

¹H NMR (400 MHz, CDCl₃): δ = 7.70 (1H, t, ³J_{HH} = 8.0 Hz), 7.66 (2H, d, ⁴J_{HH} = 2.8 Hz), 7.60 (2H, m), 7.48 (2H, d, ³J_{HH} = 8.4 Hz), 7.31 (3H, m), 7.21 (2H, d, ³J_{HH} = 8.0 Hz), 6.71 (2H, dd, ³J_{HH} = 8.4 Hz, ⁴J_{HH} = 2.4 Hz), 4.05 (4H, t, ³J_{HH} = 6.4 Hz), 1.79 (4H, m), 1.47 (4H, m), 1.21 (32H, broad m), 0.87 (6H, t, ³J_{HH} = 7.2 Hz) ppm. MS m/z (APCI+): 896.47 (calculated 896.0). CHN elemental analysis: observed (calculated): %C 65.2 (65.7), %H 7.0 (7.2), %N 1.6 (1.6)

6b: As above, using **5** (201 mg, 263 μ mol) and 1-ethynyl-4-pentylbenzene (0.07 cm³, 362 μ mol), purified using petroleum ether/ethyl acetate as eluent (4:1), crystallised from CHCl₃/acetonitrile. 154 mg (66%).

¹H NMR (400 MHz, CDCl₃): δ = 7.70 (1H, t, ³J_{HH} = 8.0 Hz), 7.67 (2H, d, ⁴J_{HH} = 2.8 Hz), 7.51 (2H, d, ³J_{HH} = 8.0 Hz), 7.48 (2H, d, ³J_{HH} = 8.4 Hz), 7.21 (2H, d, ³J_{HH} = 8.0 Hz), 7.14 (2H, d, ³J_{HH} = 8.0 Hz), 6.71 (2H, dd, ³J_{HH} = 8.4 Hz, ⁴J_{HH} = 2.4 Hz), 4.05 (4H, t, ³J_{HH} = 6.4 Hz), 2.61 (2H, t, ³J_{HH} = 8.0 Hz) 1.80 (4H, m), 1.63 (2H, m), 1.47 (4H, m), 1.33 (4H, m), 1.21 (32H, broad m), 0.87 (6H, t, ³J_{HH} = 7.2 Hz), 0.87 (3H, m) ppm. MS m/z (APCI+): 966.54 (calc. 966.14); CHN elemental analysis: observed (calculated): %C 67.1 (67.1), %H 7.8 (7.7), %N 1.4 (1.5).

6c: As above, using **5** (203 mg, 264 μ mol) and 1-ethynyl-4-octylbenzene (0.09 cm³, 362 μ mol), purified using petroleum ether/ethyl acetate as eluent (4:1), crystallised from CHCl₃/acetonitrile. 172 mg (71%).

¹H NMR (400 MHz, CDCl₃): δ = 7.70 (1H, t, ³J_{HH} = 8.0 Hz), 7.67 (2H, d, ⁴J_{HH} = 2.8 Hz), 7.51 (2H, d, ³J_{HH} = 8.0 Hz), 7.48 (2H, d, ³J_{HH} = 8.4 Hz), 7.21 (2H, d, ³J_{HH} = 8.0 Hz), 7.14 (2H, d, ³J_{HH} = 8.0 Hz), 6.71 (2H, dd, ³J_{HH} = 8.4 Hz, ⁴J_{HH} = 2.4 Hz), 4.05 (4H, t, ³J_{HH} = 6.4 Hz), 2.61 (2H, t, ³J_{HH} = 8.0 Hz), 1.80 (4H, m), 1.63 (2H, m), 1.47 (4H, m), 1.31 (10H, m), 1.21 (32H, broad m), 0.87 (6H, t, ³J_{HH} = 7.2 Hz), 0.87 (3H, m) ppm. MS m/z (APCI+): 1008.59 (Calc. 1008.22). CHN elemental analysis: observed (calculated): %C 67.5 (67.90), %H 7.9 (8.0), %N 1.3 (1.4).

7a: Synthesised as above using **5**, (79.1 mg, 102 μ mol) and 4-ethynyl-1-(octyloxy)benzene (44.1 mg, 192 μ mol), purified using petroleum ether/CH₂Cl₂ (initially 7:3, followed by 1:1) as eluent, crystallised from CHCl₃/acetonitrile. 64.2 mg (66 %).

¹H NMR (400 MHz, CDCl₃): δ = 7.67 (1H, t, ³J_{HH} = 8.0 Hz), 7.63 (2H, d, ⁴J_{HH} = 2.7 Hz), 7.52 (2H, AA'XX', ³J_{HH} = 8.6 Hz), 7.45 (2H, d, ³J_{HH} = 8.5 Hz), 7.18 (2H, d, ³J_{HH} = 8.0 Hz), 6.85 (2H, AA'XX', ³J_{HH} = 8.6 Hz), 6.68 (2H, dd, ³J_{HH} = 8.5 Hz, ⁴J_{HH} = 2.6 Hz), 4.04 (4H, t, ³J_{HH} = 6.7 Hz), 3.97 (2H, t, ³J_{HH} = 6.5 Hz), 1.80 (6H, m), 1.46 (6H, m), 1.27 (40H, broad m), 0.88 (9H, m) ppm; MS m/z (APCI+): 1024.58 (calc. 1024.22); CHN elemental analysis: observed (calculated): %C 66.6 (66.8), %H 7.7 (7.9), %N 1.2 (1.4).

7b: Synthesised as above using **5**, (69.4 mg, 82.1 μ mol) and 4-ethynyl-1-(decyloxy)benzene (44.1 mg, 152 μ mol), purified using petroleum ether/CH₂Cl₂ (initially 7:3, followed by 1:1) as eluent, crystallised from CHCl₃/acetonitrile. 84.2 mg (95 %).

¹H NMR (400 MHz, CDCl₃): δ = 7.68 (1H, t, ³J_{HH} = 8.0 Hz), 7.65 (2H, d, ⁴J_{HH} = 2.7 Hz), 7.52 (2H, AA'XX', ³J_{HH} = 8.6 Hz), 7.46 (2H, d, ³J_{HH} = 8.5 Hz), 7.19 (2H, d, ³J_{HH} = 8.0 Hz), 6.86 (2H, AA'XX', ³J_{HH} = 8.6 Hz), 6.69 (2H, dd, ³J_{HH} = 8.5 Hz, ⁴J_{HH} = 2.6 Hz), 4.05 (4H, t, ³J_{HH} = 6.7 Hz), 3.97 (2H, t, ³J_{HH} = 6.5 Hz), 1.80 (6H, m), 1.46 (6H, m), 1.27 (44H, broad m), 0.88 (9H, m) ppm; MS m/z (APCI+): 1052.62 (calc. 1052.27); CHN elemental analysis: observed (calculated): %C 67.5 (67.3), %H 7.6 (8.0), %N 1.5 (1.3).

7c: Synthesised as above using **5**, (62.5 mg, 803 μ mol) and 4-ethynyl-1-(dodecyloxy)benzene (41.9 mg, 132 μ mol), purified using petroleum ether/CH₂Cl₂ (initially 7:3, followed by 1:1) as eluent, crystallised from CHCl₃/acetonitrile. 79.1 mg (97 %).

¹H NMR (400 MHz, CDCl₃): δ = 7.68 (1H, t, ³J_{HH} = 8.0 Hz), 7.65 (2H, d, ⁴J_{HH} = 2.7 Hz), 7.52 (2H, AA'XX', ³J_{HH} = 8.6 Hz), 7.46 (2H, d, ³J_{HH} = 8.5 Hz), 7.19 (2H, d, ³J_{HH} = 8.0 Hz), 6.85 (2H, AA'XX', ³J_{HH} = 8.6 Hz), 6.70 (2H, dd, ³J_{HH} = 8.5 Hz, ⁴J_{HH} = 2.6 Hz), 4.05 (4H, t, ³J_{HH} = 6.7 Hz), 3.97 (2H, t, ³J_{HH} = 6.5 Hz), 1.80 (6H, m), 1.46 (6H, m), 1.27 (48H, broad m), 0.88 (9H, m) ppm; MS m/z (APCI+): 1080.65 (calc. 1080.32); CHN elemental analysis: observed (calculated): %C 67.8 (67.4), %H 8.1 (8.2), %N 1.4 (1.3).

7d: Synthesised as above using **5**, (80.2 mg, 105 μ mol) and 4-ethynyl-1-(tetradecyloxy)benzene (60.1 mg, 183 μ mol), purified using petroleum ether/CH₂Cl₂ (initially 7:3, followed by 1:1) as eluent, crystallised from CHCl₃/acetonitrile. 83.2 mg (78 %).

¹H NMR (400 MHz, CDCl₃): δ = 7.68 (1H, t, ³J_{HH} = 8.0 Hz), 7.65 (2H, d, ⁴J_{HH} = 2.7 Hz), 7.52 (2H, AA'XX', ³J_{HH} = 8.6 Hz), 7.46 (2H, d, ³J_{HH} = 8.5 Hz), 7.19 (2H, d, ³J_{HH} = 8.0 Hz), 6.85 (2H, AA'XX', ³J_{HH} = 8.6 Hz), 6.70 (2H, dd, ³J_{HH} = 8.5 Hz, ⁴J_{HH} = 2.6 Hz), 4.05 (4H, t, ³J_{HH} = 6.7 Hz), 3.97 (2H, t, ³J_{HH} = 6.5 Hz), 1.80 (6H, m), 1.46 (6H, m), 1.27 (52H, broad m), 0.88 (9H, m) ppm; MS m/z (APCI+): 1108.68 (calc. 1108.38); CHN elemental analysis: observed (calculated): %C 67.9 (68.3), %H 8.3 (8.4), %N 1.2 (1.3).

8a: Synthesised as above using **5** (118 mg, 142 μ mol) and 4-ethynyl-1,2-bisoctyloxybenzene (132 mg, 368 μ mol), purified using petroleum ether/CH₂Cl₂ as eluent (1:1), crystallised from acetone. 128 mg (75%).

¹H NMR (400 MHz, CDCl₃): δ = 7.67 (1H, t, ³J_{HH} = 8.0 Hz), 7.64 (2H, d, ⁴J_{HH} = 2.2 Hz), 7.45 (2H, d, ³J_{HH} = 8.6 Hz), 7.18 (2H, d, ³J_{HH} = 8.0 Hz), 7.15 (2H, m), 6.83 (1H, d, ³J_{HH} = 8.0 Hz), 6.69 (2H, dd, ³J_{HH} = 8.5 Hz, ⁴J_{HH} = 2.6 Hz), 4.04 (4H, t, ³J_{HH} = 6.6 Hz), 4.02 (2H, t, ³J_{HH} = 6.7 Hz), 4.01 (2H, t, ³J_{HH} = 6.7 Hz), 1.81 (8H, m), 1.46 (8H, m), 1.25 (48H, broad m), 0.88 (12H, m) ppm. MS m/z (APCI+): 1152.71 (calc. 1152.43). CHN elemental analysis: observed (calculated): %C 67.4 (67.7), %H 8.7 (8.4), %N 1.4 (1.2).

8b: Synthesised as above using **5** (117 mg, 141 μ mol) and 4-ethynyl-1,2-bisdecyloxybenzene (151 mg, 362 μ mol), purified using petroleum ether/ethyl acetate as eluent (4:1), followed by a second column with CH₂Cl₂ as the eluent, crystallised from acetone. 103 mg (61%).

¹H NMR (400 MHz, CDCl₃): δ = 7.68 (1H, t, ³J_{HH} = 8.0 Hz), 7.65 (2H, d, ⁴J_{HH} = 2.5 Hz), 7.46 (2H, d, ³J_{HH} = 8.5 Hz), 7.19 (2H, d, ³J_{HH} = 8.0 Hz), 7.15 (2H, m), 6.82 (1H, d, ³J_{HH} = 8.0 Hz), 6.70 (2H, dd, ³J_{HH} = 8.5 Hz, ⁴J_{HH} = 2.6 Hz), 4.05 (4H, t, ³J_{HH} = 6.6 Hz), 4.02 (2H, t, ³J_{HH} = 6.7 Hz), 4.01 (2H, t, ³J_{HH} = 6.7 Hz), 1.81 (8H, m), 1.46 (8H, m), 1.25 (56H, broad m), 0.88 (12H, m) ppm; MS m/z (APCI+): 1208.77 (calc. 1208.53); CHN elemental analysis: observed (calculated): %C 67.7 (68.6), %H 8.6 (8.7), %N 1.0 (1.2). The CHN data for this complex are outside of the bounds required to confirm purity. However, the 1H NMR spectrum was clean and fully assigned and the LC

properties do not deviate from that which might be expected. We also note that melting and clearing points were not unduly broad and also that this complex was not studied in detail for its photophysical properties. As such, we do not believe that the small margin of error for this one complex is significant.

8c: Synthesised as above using **5** (98.1 mg, 110 μ mol) and 4-ethynyl-1,2-bisdodecyloxybenzene (141 mg, 303 μ mol), purified using petroleum ether/CH₂Cl₂ as eluent (1:1), crystallised from acetone. 93.1 mg (66 %).

¹H NMR (400 MHz, CDCl₃): δ = 7.70 (1H, t, ³J_{HH} = 8.0 Hz), 7.67 (2H, d, ⁴J_{HH} = 2.6 Hz), 7.48 (2H, d, ³J_{HH} = 8.6 Hz), 7.21 (2H, d, ³J_{HH} = 8.1 Hz), 7.15 (2H, m), 6.82 (1H, d, ³J_{HH} = 8.2 Hz), 6.72 (2H, dd, ³J_{HH} = 8.6 Hz, ⁴J_{HH} = 2.7 Hz), 4.06 (4H, t, ³J_{HH} = 6.6 Hz), 4.02 (2H, t, ³J_{HH} = 6.6 Hz), 4.01 (2H, t, ³J_{HH} = 6.6 Hz), 1.81 (8H, m), 1.46 (8H, m), 1.25 (64H, broad m), 0.88 (12H, m) ppm. MS m/z (APCI+): 1264.83 (calc. 1264.64); CHN elemental analysis: observed (calculated): %C 69.2 (69.3), %H 9.1 (8.9), %N 1.0 (1.1).

8d: Synthesised as above using **5** (97.2 mg, 113 μ mol) and 4-ethynyl-1,2bistetradecyloxybenzene (158 mg, 302 μ mol), purified using petroleum ether/CH₂Cl₂ as eluent (1:1), crystallised from acetone. 99.1 mg (65 %).

¹H NMR (400 MHz, CDCl₃): δ = 7.71 (1H, t, ³J_{HH} = 8.1 Hz), 7.67 (2H, d, ⁴J_{HH} = 2.5 Hz), 7.48 (2H, d, ³J_{HH} = 8.5 Hz), 7.22 (2H, d, ³J_{HH} = 8.1 Hz), 7.15 (2H, m), 6.82 (1H, d, ³J_{HH} = 8.1 Hz), 6.72 (2H, dd, ³J_{HH} = 8.6 Hz, ⁴J_{HH} = 2.7 Hz), 4.06 (4H, t, ³J_{HH} = 6.6 Hz), 4.02 (2H, t, ³J_{HH} = 6.6 Hz), 4.01 (2H, t, ³J_{HH} = 6.6 Hz), 1.81 (8H, m), 1.46 (8H, m), 1.25 (72H, broad m), 0.88 (12H, m) ppm. MS m/z (APCI+): 1320.90 (calc. 1320.75); CHN elemental analysis: observed (calculated): %C 69.5 (70.0), %H 9.2 (9.2), %N 1.0 (1.1)

9a: Synthesised as above using **5** (113 mg, 142 μ mol) and 5-ethynyl-1,2,3-trisoctyloxybenzene (98.2 mg, 201 μ mol), purified using petroleum ether/ethyl acetate as eluent (7:3), crystallised from acetone. 110 mg (64%).

¹H NMR (400 MHz, CDCl₃): δ = 7.72 (1H, t, ³J_{HH} = 8.0 Hz), 7.65 (2H, d, ⁴J_{HH} = 2.3 Hz), 7.49 (2H, d, ³J_{HH} = 8.7 Hz), 7.22 (2H, d, ³J_{HH} = 7.8 Hz), 6.81 (2H, s, ³J_{HH} = 8.0 Hz), 6.72 (2H, dd, ³J_{HH} = 8.7 Hz, ⁴J_{HH} = 2.6 Hz), 4.05 (4H, t, ³J_{HH} = 6.4 Hz), 3.99 (4H, t, ³J_{HH} = 6.4 Hz), 3.97 (2H, t, ³J_{HH} = 6.4 Hz), 1.79

(10H, m), 1.47 (10H, m), 1.25 (56H, broad m), 0.87 (15H, m) ppm. MS m/z (APCI+): 1280.83 (calc. 1280.64). CHN elemental analysis: observed (calculated): %C 68.1 (68.5), %H 8.7 (8.8), %N 1.0 (1.1).

9b: Synthesised as above using **5** (132 mg, 159 μ mol) and 5-ethynyl-1,2,3-trisdecyloxybenzene (225 mg, 389 μ mol), purified using petroleum ether/ethyl acetate as eluent (4:1), crystallised from acetone. 156 mg (72 %).

¹H NMR (400 MHz, CDCl₃): δ = 7.71 (1H, t, ³J_{HH} = 8.0 Hz), 7.65 (2H, d, ⁴J_{HH} = 2.7 Hz), 7.49 (2H, d, ³J_{HH} = 8.5 Hz), 7.22 (2H, d, ³J_{HH} = 7.9 Hz), 6.81 (2H, s, ³J_{HH} = 8.0 Hz), 6.72 (2H, dd, ³J_{HH} = 8.6 Hz, ⁴J_{HH} = 2.7 Hz), 4.05 (4H, t, ³J_{HH} = 6.4 Hz), 3.99 (4H, t, ³J_{HH} = 6.4 Hz), 3.97 (2H, t, ³J_{HH} = 6.4 Hz), 1.79 (10H, m), 1.47 (10H, m), 1.25 (68H, broad m), 0.87 (15H, m) ppm; MS m/z (APCl+): 1364.92 (calc. 1364.80); CHN elemental analysis: observed (calculated): %C 69.1 (69.5), %H 9.3 (9.2), %N 1.2 (1.0).

9c: Synthesised as above using **5** (85.2 mg, 100 μ mol) and 5-ethynyl-1,2,3tris(dodecyloxy)benzene (102 mg, 152 μ mol), purified using petroleum ether/ethyl acetate as eluent (4:1), crystallised from acetone. 92.4 mg (62%).

¹H NMR (400 MHz, CDCl₃): δ = 7.72 (1H, t, ³J_{HH} = 8.0 Hz), 7.65 (2H, d, ⁴J_{HH} = 2.3 Hz), 7.49 (2H, d, ³J_{HH} = 8.7 Hz), 7.22 (2H, d, ³J_{HH} = 7.8 Hz), 6.81 (2H, s), 6.72 (2H, dd, ³J_{HH} = 8.7 Hz, ⁴J_{HH} = 2.6 Hz), 4.05 (4H, t, ³J_{HH} = 6.4 Hz), 3.99 (4H, t, ³J_{HH} = 6.4 Hz), 3.97 (2H, t, ³J_{HH} = 6.4 Hz), 1.80 (10H, m), 1.47 (10H, m), 1.25 (80H, broad m), 0.87 (15H, m) ppm. MS m/z (APCI+): 1449.01 (calc. 1448.96). CHN elemental analysis: observed (calculated): %C 70.4 (70.5), %H 9.4 (9.5), %N 0.9 (1.0)

9d: Synthesised as above using **5** (102 mg, 121 μmol) and 5-ethynyl-1,2,3tris(tetradecyloxy)benzene (222 mg, 299 μmol), purified using petroleum ether/ethyl acetate as eluent (4:1), crystallised from acetone. 165 mg (89 %).

¹H NMR (400 MHz, CDCl₃): δ = 7.70 (1H, t, ³J_{HH} = 8.0 Hz), 7.64 (2H, d, ⁴J_{HH} = 2.5 Hz), 7.48 (2H, d, ³J_{HH} = 8.6 Hz), 7.21 (2H, d, ³J_{HH} = 8.0 Hz), 6.81 (2H, s), 6.71 (2H, dd, ³J_{HH} = 8.4 Hz, ⁴J_{HH} = 2.6 Hz), 4.04 (4H, t, ³J_{HH} = 6.4 Hz), 3.99 (4H, t, ³J_{HH} = 6.4 Hz), 3.97 (2H, t, ³J_{HH} = 6.4 Hz), 1.80 (10H, m), 1.47 (10H, m), 1.25 (92H, broad m), 0.87 (15H, m) ppm.; MS m/z (APCI+): 1533.10 (calc. 1533.12); CHN elemental analysis: observed (calculated): %C 70.8 (71.3), %H 9.5 (9.7), %N 0.7 (0.9).

10a: Synthesised as above using **14** (201 mg, 161 μ mol) and phenylacetylene (0.03 cm³, 273 μ mol), purified using petroleum ether/ethyl acetate as eluent (1:4), crystallised from CHCl₃/acetonitrile. 169 mg (80%).

¹H NMR (400 MHz, CDCl₃): δ = 7.68 (1H, t, ³J_{HH} = 8.0 Hz), 7.61 (2H, s), 7.57 (2H, m), 7.31 (3H, m), 7.14 (2H, d, ³J_{HH} = 8.0 Hz), 7.06 (2H, s), 4.14 (4H, t, ³J_{HH} = 6.4 Hz), 3.99 (4H, t, ³J_{HH} = 6.8 Hz), 1.79 (8H, m), 1.47 (8H, m), 1.21 (64H, broad m), 0.87 (12H, t, ³J_{HH} = 7.2 Hz) ppm. MS m/z (APCI+): 1264.84 (calc. 1264.64). CHN elemental analysis: observed (calculated): %C 68.9 (69.3), %H 8.8 (8.9), %N 1.1 (1.1).

10b: Synthesised as above using **14** (150 mg, 132 μ mol) and 1-ethynyl-4-pentylbenzene (0.04 cm³, 203 μ mol), purified using petroleum ether/ethyl acetate as eluent (1:4), crystallised from CHCl₃/acetonitrile. 135 mg (81%).

¹H NMR (400 MHz, CDCl₃): δ = 7.66 (1H, t, ³J_{HH} = 8.0 Hz), 7.61 (2H, s), 7.48 (2H, d, ³J_{HH} = 8.0 Hz), 7.13 (2H, d, ³J_{HH} = 8.0 Hz), 7.12 (2H, d, ³J_{HH} = 8.0 Hz), 7.05 (2H, s), 4.14 (4H, t, ³J_{HH} = 6.4 Hz), 3.99 (4H, t, ³J_{HH} = 6.8 Hz), 2.60 (2H, t, ³J_{HH} = 7.6 Hz), 1.79 (8H, m), 1.47 (8H, m), 1.61 (2H, m), 1.31 (4H, m), 1.21 (64H, broad m), 0.87 (15H, t, ³J_{HH} = 7.2 Hz), ppm. MS m/z (APCI+): 1334.91 (calc. 1334.91). CHN elemental analysis: observed (calculated): %C 70.1 (70.2), %H 9.4 (9.2), %N 0.9 (1.1)

10c: Synthesised as above using **14** (198 mg, 164 μ mol) and 1-ethynyl-4-octylbenzene (0.06 cm³, 242 μ mol), purified using petroleum ether/ethyl acetate as eluent (1:4), crystallised from CHCl₃/acetonitrile. 198 mg (86%).

¹H NMR (400 MHz, CDCl₃): δ = 7.67 (1H, t, ³J_{HH} = 8.0 Hz), 7.62 (2H, s), 7.48 (2H, d, ³J_{HH} = 8.0 Hz), 7.13 (2H, d, ³J_{HH} = 8.4 Hz), 7.12 (2H, d, ³J_{HH} = 8.4 Hz), 7.06 (2H, s), 4.14 (4H, t, ³J_{HH} = 6.4 Hz), 3.99 (4H, t, ³J_{HH} = 6.8 Hz), 2.60 (2H, t, ³J_{HH} = 7.6 Hz), 1.79 (8H, m), 1.47 (8H, m), 1.61 (2H, m), 1.31 (10H, m), 1.21 (64H, broad m), 0.87 (15H, t, ³J_{HH} = 7.2 Hz) ppm; MS m/z (APCI+): 1376.96 (calc. 1376.85); CHN elemental analysis: observed (calculated): %C 70.26 (70.66), %H 9.25 (9.37), %N 0.91 (1.02).

11a: Synthesised as above using **14** (130 mg, 124 μ mol) and 4-ethynyl-1-(octyloxy)benzene (63.0 mg, 272 μ mol), purified using petroleum ether/ethyl acetate as eluent (9:1) and crystallised from acetone. 121 mg (80 %).

¹H NMR (400 MHz, CDCl₃): δ = 7.67 (1H, t, ³J_{HH} = 8.0 Hz), 7.6 (2H, s), 7.49 (2H, AA'XX', ³J_{HH} = 8.7 Hz), 7.13 (2H, d, ³J_{HH} = 8.0 Hz), 7.06 (2H, s), 6.84 (2H, AA'XX', ³J_{HH} = 8.7 Hz), 4.15 (4H, t, ³J_{HH} = 6.4 Hz), 4.00 (2H, t, ³J_{HH} = 6.5 Hz), 3.96 (2H, t, ³J_{HH} = 6.7 Hz), 1.82 (10H, m), 1.46 (10H, m), 1.25 (72H, broad m), 0.87 (15H, m) ppm. MS m/z (APCI+): 1392.95 (calc. 1392.85). CHN elemental analysis: observed (calculated): %C 69.6 (69.9), %H 9.6 (9.3), %N 1.0 (0.9).

11b: Synthesised as above using **14** (131 mg, 121 μ mol) and 4-ethynyl-1-(decyloxy)benzene (70.0 mg, 271 μ mol), purified using petroleum ether/ethyl acetate as eluent (9:1) and crystallised from acetone. 135 mg (87 %).

¹H NMR (400 MHz, CDCl₃): δ = 7.67 (1H, t, ³J_{HH} = 8.0 Hz), 7.62 (2H, s), 7.49 (2H, AA'XX', ³J_{HH} = 8.7 Hz), 7.13 (2H, d, ³J_{HH} = 8.0 Hz), 7.06 (2H, s), 6.84 (2H, AA'XX', ³J_{HH} = 8.7 Hz), 4.15 (4H, t, ³J_{HH} = 6.4 Hz), 4.00 (2H, t, ³J_{HH} = 6.5 Hz), 3.96 (2H, t, ³J_{HH} = 6.7 Hz), 1.82 (10H, m), 1.46 (10H, m), 1.25 (78H, broad m), 0.87 (15H, m) ppm; MS m/z (APCI+): 1420.98 (calc. 1420.91). CHN elemental analysis: observed (calculated): %C 70.0 (70.2), %H 9.8 (9.4), %N 0.9 (1.0).

11c: Synthesised as above using **14** (129 mg, 121 μ mol) and 4-ethynyl-1-(dodecyloxy)benzene (78.0 mg, 271 μ mol), purified using petroleum ether/ethyl acetate as eluent (9:1) and crystallised from acetone. 135 mg (87 %).

¹H NMR (400 MHz, CDCl₃): δ = 7.68 (1H, t, ³J_{HH} = 8.0 Hz), 7.63 (2H, s), 7.49 (2H, AA'XX', ³J_{HH} = 8.7 Hz), 7.14 (2H, d, ³J_{HH} = 8.0 Hz), 7.07 (2H, s), 6.84 (2H, AA'XX', ³J_{HH} = 8.7 Hz), 4.15 (4H, t, ³J_{HH} = 6.4 Hz), 4.00 (2H, t, ³J_{HH} = 6.5 Hz), 3.96 (2H, t, ³J_{HH} = 6.7 Hz), 1.83 (10H, m), 1.46 (10H, m), 1.25 (82H, broad m), 0.88 (15H, m) ppm. MS m/z (APCl+): 1449.02 (calc. 1448.96). CHN elemental analysis: observed (calculated): %C 70.3 (70.5), %H 9.6 (9.5), %N 1.0 (1.0).

11d: Synthesised as above using **14** (131 mg, 110 μ mol) and 4-ethynyl-1-(tetradecyloxy)benzene (85.1 mg, 272 μ mol), purified using petroleum ether/ethyl acetate as eluent (9:1) and crystallised from acetone. 141 mg (88 %).

¹H NMR (400 MHz, CDCl₃): δ = 7.67 (1H, t, ³J_{HH} = 8.0 Hz), 7.62 (2H, s), 7.49 (2H, AA'XX', ³J_{HH} = 8.7 Hz), 7.13 (2H, d, ³J_{HH} = 8.0 Hz), 7.06 (2H, s), 6.84 (2H, AA'XX', ³J_{HH} = 8.7 Hz), 4.15 (4H, t, ³J_{HH} = 6.4 Hz), 4.00 (2H, t, ³J_{HH} = 6.5 Hz), 3.96 (2H, t, ³J_{HH} = 6.7 Hz), 1.83 (10H, m), 1.46 (10H, m), 1.25 (86H, broad m), 0.88 (15H, m) ppm. MS m/z (APCI+): 1477.05 (calc. 1477.01); CHN elemental analysis: observed (calculated): %C 70.51 (70.75), %H 9.14 (9.55), %N 0.86 (0.95).

12a: Synthesised as above using **14** (118 mg, 101 μ mol) and 4-ethynyl-1,2-bis(octyloxy)benzene (92.1 mg, 262 μ mol), purified using petroleum ether/ethyl acetate as eluent (95:5) and crystallised from acetone. 87.0 mg (59 %).

¹H NMR (400 MHz, CDCl₃): δ = 7.65 (1H, t, ³J_{HH} = 8.0 Hz), 7.60 (2H, s), 7.11 (2H, d, ³J_{HH} = 8.0 Hz), 7.11 (1H, m), 7.04 (2H, s), 6.81 (2H, d, ³J_{HH} = 8.2Hz), 4.14 (4H, t, ³J_{HH} = 6.4 Hz), 4.00 (2H, t, ³J_{HH} = 6.5 Hz), 3.99 (4H, t, ³J_{HH} = 6.5 Hz), 1.81 (12H, m), 1.46 (12H, m), 1.25 (80H, broad m), 0.87 (18H, m) ppm. MS m/z (APCI+): 1521.07 (calc. 1521.07). CHN elemental analysis: observed (calculated): %C 70.0 (70.3), %H 9.7 (9.5), %N 0.9 (0.9).

12b: Synthesised as above using **14** (117 mg, 102 μ mol) and 4-ethynyl-1,2-bis(decyloxy)benzene (102 mg, 250 μ mol), purified using petroleum ether/ethyl acetate as eluent (95:5) and crystallised from acetone. 104 mg (67%).

¹H NMR (400 MHz, CDCl₃): δ = 7.67 (1H, t, ³J_{HH} = 8.0 Hz), 7.61 (2H, s), 7.13 (2H, d, ³J_{HH} = 8.0 Hz), 7.12 (1H, m), 7.07 (2H, s), 6.81 (2H, d, ³J_{HH} = 8.2Hz), 4.14 (4H, t, ³J_{HH} = 6.4 Hz), 4.00 (6H, t, ³J_{HH} = 6.5 Hz), 3.99 (2H, t, ³J_{HH} = 6.5 Hz), 1.81 (12H, m), 1.46 (12H, m), 1.25 (88H, broad m), 0.87 (18H, m). MS m/z (APCl+): 1577.13 (calc. 1577.17). CHN elemental analysis: observed (calculated): %C 70.4 (70.8), %H 9.9 (9.7), %N 0.8 (0.9).

12c: Synthesised as above using **14** (117 mg, 101 μ mol) and 4-ethynyl-1,2bis(dodecyloxy)benzene (72.1 mg, 150 μ mol), purified using petroleum ether/ethyl acetate as eluent (95:5) and crystallised from acetone. 133 mg (84%).

¹H NMR (400 MHz, CDCl₃): δ = 7.66 (1H, t, ³J_{HH} = 8.0 Hz), 7.60 (2H, s), 7.12 (2H, d, ³J_{HH} = 8.0 Hz), 7.10 (1H, m), 7.05 (2H, s), 6.81 (2H, d, ³J_{HH} = 8.2Hz), 4.14 (4H, t, ³J_{HH} = 6.4 Hz), 4.00 (2H, t, ³J_{HH} = 6.5 Hz), 3.99 (6H, t, ³J_{HH} = 6.5 Hz), 1.81 (12H, m), 1.46 (12H, m), 1.25 (96H, broad m), 0.87 (18H, m) ppm. MS m/z (APCI+): 1633.20 (calc. 1633.28). CHN elemental analysis: observed (calculated): %C 71.2 (71.3), %H 10.1 (9.8), %N 0.8 (0.9).

12d: Synthesised as above using **14** (118 mg, 102 μ mol) and 4-ethynyl-1,2bis(tetradecyloxy)benzene (82.1 mg, 162 μ mol), purified using petroleum ether/ethyl acetate as eluent (95:5) and crystallised from acetone. 128 mg (78%).

¹H NMR (400 MHz, CDCl₃): δ = 7.67 (1H, t, ³J_{HH} = 8.0 Hz), 7.61 (2H, s), 7.13 (2H, d, ³J_{HH} = 8.0 Hz), 7.12 (1H, m), 7.06 (2H, s), 6.81 (2H, d, ³J_{HH} = 8.2Hz), 4.14 (4H, t, ³J_{HH} = 6.5 Hz), 4.0 (6H, t, ³J_{HH} = 6.6 Hz), 3.99 (2H, t, ³J_{HH} = 6.6 Hz), 1.81 (12H, m), 1.46 (12H, m), 1.25 (104H, broad m), 0.87 (18H, m) ppm. MS m/z (APCI+): 1689.26 (calc. 1689.38). CHN elemental analysis: observed (calculated): %C 71.6 (71.8), %H 10.4 (10.0), %N 0.9 (0.8).

13a: Synthesised as above using **14** (98.2 mg, 80.3 μ mol) and 5-ethynyl-1,2,3-tris(octyloxy)benzene (61.1 mg, 130 μ mol), purified using petroleum ether/ethyl acetate as eluent (95:5) and crystallised from acetone. 110 mg (82 %).

¹H NMR (400 MHz, CDCl₃): δ = 7.69 (1H, t, ³J_{HH} = 8.0 Hz), 7.60 (2H, s), 7.14 (2H, d, ³J_{HH} = 8.0 Hz), 7.07 (2H, s), 6.78 (2H, s), 4.13 (4H, t, ³J_{HH} = 6.4 Hz), 4.00 (4H, t, ³J_{HH} = 6.5 Hz), 3.96 (6H, t, ³J_{HH} = 6.5 Hz), 1.81 (14H, m), 1.46 (14H, m), 1.25 (88H, broad m), 0.87 (21H, m) ppm. MS m/z (APCI+): 1649.19 (calc. 1649.28). CHN elemental analysis: observed (calculated): %C 70.4 (70.6), %H 9.6 (9.9), %N 0.8 (0.9)

13b: Synthesised as above using **14** (131 mg, 111 μ mol) and 5-ethynyl-1,2,3-tris(decyloxy)benzene (156 mg, 270 μ mol), purified using petroleum ether/ethyl acetate as eluent (95:5) and crystallised from acetone. 159 mg (84 %).

¹H NMR (400 MHz, CDCl₃): δ = 7.67 (1H, t, ³J_{HH} = 8.0 Hz), 7.59 (2H, s), 7.13 (2H, d, ³J_{HH} = 8.1 Hz), 7.06 (2H, s), 6.78 (2H, s), 4.13 (4H, t, ³J_{HH} = 6.4 Hz), 3.99 (4H, t, ³J_{HH} = 6.4 Hz), 3.96 (6H, t, ³J_{HH} = 6.8 Hz), 1.81 (14H, m), 1.46 (14H, m), 1.25 (100H, broad m), 0.87 (21H, m) ppm. MS m/z (APCI+): 1733.29 (calc. 1733.44). CHN elemental analysis: observed (calculated): %C 71.3 (71.4), %H 10.0 (10.0), %N 0.8 (0.8). **13c:** Synthesised as above using **14** (94.1 mg, 80.2 μ mol) and 5-ethynyl-1,2,3-tris(dodecyloxy)benzene (77.0 mg, 120 μ mol), purified using petroleum ether/ethyl acetate as eluent (95:5) and crystallised from acetone. 81.1 mg (58 %).

¹H NMR (400 MHz, CDCl₃): δ = 7.69 (1H, t, ³J_{HH} = 8.0 Hz), 7.60 (2H, s), 7.14 (2H, d, ³J_{HH} = 8.1 Hz), 7.07 (2H, s), 6.78 (2H, s), 4.13 (4H, t, ³J_{HH} = 6.1 Hz), 4.00 (4H, t, ³J_{HH} = 6.4 Hz), 3.96 (6H, t, ³J_{HH} = 6.8 Hz), 1.81 (14H, m), 1.46 (14H, m), 1.25 (112H, broad m), 0.87 (21H, m) ppm. MS m/z (APCI+): 1817.38 (calc. 1817.60). CHN elemental analysis: observed (calculated): %C 71.8 (72.0), %H 10.2 (10.2), %N 0.8 (0.8).

13d: Synthesised as above using **14** (129 mg, 113 μ mol) and 5-ethynyl-1,2,3tris(tetradecyloxy)benzene (205 mg, 280 μ mol), purified using petroleum ether/ethyl acetate as eluent (95:5) and crystallised from acetone. 138 mg (71 %).

¹H NMR (400 MHz, CDCl₃): δ = 7.68 (1H, t, ³J_{HH} = 8.0 Hz), 7.60 (2H, s), 7.14 (2H, d, ³J_{HH} = 8.1 Hz), 7.07 (2H, s), 6.78 (2H, s), 4.13 (4H, t, ³J_{HH} = 6.4 Hz), 4.00 (4H, t, ³J_{HH} = 6.4 Hz), 3.96 (6H, t, ³J_{HH} = 6.8 Hz), 1.81 (14H, m), 1.46 (14H, m), 1.25 (124H, broad m), 0.87 (21H, m) ppm. MS m/z (APCI+): 1901.48 (calc. 1901.76). CHN elemental analysis: observed (calculated): %C 72.4 (72.6), %H 10.3 (10.4), %N 0.9 (0.7).

Single Crystal X-ray Structures of Complex 5

The complex shares broadly similar structural parameters with those described in the main manuscript and all may be interrogated using the deposited cif file. The packing motif for these complexes is directly analogous to that illustrated in Chart 2c for complex **6c**.

Figure S1 Molecular structure of complex 5.

Table S1: Summary of X-ray diffraction data for 5, 6a and 6b.

Complex (CCDC No.)	5 (1991483)	6a (1991485)	6b (1991484)
Empirical formula	C ₄₁ H ₅₉ AuCINO ₂	C ₄₉ H ₆₃ AuNO ₂	C ₅₄ H ₇₄ AuNO ₂
Formula weight	830.30	894.97	966.10
Temperature/K	110.05(10)	110.05(10)	109.95(10)
Crystal system	triclinic	triclinic	triclinic
Space group	<i>P</i> -1	<i>P</i> –1	<i>P</i> –1
a/Å	10.0951(4)	12.7876(5)	13.7316(4)
b/Å	19.5688(6)	14.4385(7)	13.9293(4)
<i>c</i> /Å	29.1623(8)	23.1895(10)	26.4188(6)
$\alpha/^{\circ}$	97.315(2)	87.661(4)	86.646(2)
β/°	95.911(3)	77.162(4)	86.841(2)
γl°	99.572(3)	86.370(4)	66.516(3)
Volume/ų	5589.0(3)	4164.6(3)	4623.9(2)
Ζ	6	4	4
$ ho_{calc}$ g/cm ³	1.480	1.427	1.388
µ/mm⁻¹	8.336	6.928	6.279
F(000)	2544.0	1836.0	2000.0
Crystal size/mm ³	$0.467 \times 0.059 \times 0.053$	$0.288 \times 0.062 \times 0.045$	$0.214 \times 0.079 \times 0.058$
Radiation	CuKα (λ = 1.54184)	CuKα (λ = 1.54184)	CuKα (λ = 1.54184)
2 θ range for data collection/°	7.142 to 134.154	7.1 to 134.16	6.924 to 134.136
Index ranges	$-11 \le h \le 11, -23 \le k \le 23,$	$-15 \le h \le 15, -17 \le k \le 17,$	$-16 \le h \le 16, -16 \le k \le 16,$
index ranges	-23 ≤ <i>l</i> ≤ 34	-19 ≤ <i>l</i> ≤ 27	-24 ≤ <i>l</i> ≤ 31
Reflections collected	20716	29085	48560
Independent reflections	15577 [<i>R</i> _{int} = 0.0523,	14876 [<i>R</i> _{int} = 0.0451,	16525 [<i>R</i> _{int} = 0.0402,
independent reflections	$R_{sigma} = 0.0939$]	R _{sigma} = 0.0595]	R _{sigma} = 0.0427]
Data/ restraints/ parameters	15577/0/1231	14876/0/953	16525/0/1051
Goodness-of-fit on <i>F</i> ²	1.050	1.032	1.044
Final R indexes $[I \ge 2\sigma(I)]$	$R_1 = 0.0606, wR_2 = 0.1413$	$R_1 = 0.0599, wR_2 = 0.1516$	$R_1 = 0.0492, wR_2 = 0.1159$
Final R indexes [all data]	$R_1 = 0.0831, wR_2 = 0.1598$	$R_1 = 0.0805, wR_2 = 0.1740$	$R_1 = 0.0663, wR_2 = 0.1301$
Largest diff. peak/hole / e Å ⁻³	4.70/-1.87	8.73/-2.46	4.98/-2.33

Figure S2a) SAXS pattern for **5** (R = H) at 155.0 °C on cooling from the isotropic liquid and b) optical texture at 158.2 °C on cooling from the isotropic liquid.

Figure S3a) photomicrograph of Col_h phase of **6c** at 70.7 °C on cooling from the isotropic liquid and b) corresponding SAXS pattern at 66.0 °C on cooling from the isotropic liquid.

Complex	Phase	2 <i>θ </i> °	d _{obs} /Å	d _{calc} / Å	hkl	a/ Å
5	Lam	2.87	30.7	30.7	001	-
	<i>T</i> = 155.0 °C cooling	5.73	15.4	15.4	002	
		9.14	9.7	10.2	003	
		9.92	8.9			
		13.95	6.3			
		16.13	5.5			
		17.26	5.1			
6c	Colh	3.04	29.0	29.0	10	33.5
	<i>T</i> = 60.4 °C cooling					
7a	Colh	3.01	29.3	29.3	10	33.8
	T = 80.0 °C cooling					
8a	Colh	2.83	31.2	31.2	10	36.0
	T = 51.1 °C cooling	4.90	18.0	18.0	11	
8b	Col _h ¹	2.82	31.3	31.3	10	36.1
	T = 80 °C cooling	4.88	18.1	18.1	11	
	Col _h ²	2.65	33.3	33.3	10	- 38.5
	T = 30 °C cooling	4.62	19.1	19.2	11	
	Col _h ³	2.74	32.2	32.2	10	37.2
	$T = 60 ^{\circ}\text{C} 2^{nd}$ heating	4.78	18.5	18.6	11	
8c	Colh	2.64	33.4	33.4	10	38.6
	T = 80.0 °C cooling	4.57	19.3	19.3	11	
	_	5.24	16.8	16.7	20	
8d	Col _h	2.68	32.9	32.9	10	38.0
	T = 95 °C heating	4.61	19.1	19.0	11	
9a	Colr	2.46	35.9	35.9	11	- a =
	T = 60.4 °C cooling	2.95	29.9	29.9	20	59.8
	-	4.82	18.3	18.2	31	b =
		7.27	12.1	11.9	33	44.9
		9.45	9.3	9.3	53	
9b	Col _h	2.84	31.1	31.1	10	a =
	T = 75 °C cooling	4.91	18.0	18.0	11	35.9

Table S2: X-ray diffraction data for complexes **5 to 9**, presenting the measured and calculated spacing, Miller indices and calculated parameters (where applicable).

$\mathbf{F} = 50 \ ^{\circ} C \ \operatorname{cooling}$ $\mathbf{F} = 50 \ ^{\circ} C \ \operatorname{cooling}$ $4.54 19.4 19.3 3.1 \qquad b^{=}$ $4.54 19.4 19.3 3.1 \qquad b^{=}$ $4.54 19.4 19.3 3.1 \qquad b^{=}$ $4.33 12.8 3.3 48.$		Colr	2.30	38.4	38.4	11	a =
9c Colr T = 83.8 °C cooling T = 86.1 °C cooling T = 79.0 °C cooling T = 79.0 °C cooling T = 86.1 °C cooling T = 79.0 °C cooling T = 86.1 °C cooling T = 86.1 °C cooling T = 79.0 °C cooling T = 50.0 °		T = 50 °C cooling	2.79	31.6	31.6	20	63.2
9c Colr $T = 83.8 ^{\circ}C$ cooling $T = 83.8 ^{\circ}C$ cooling 2.69 32.8 32.8 20 3.46 25.4 25.5 02 4.34 20.3 20.1 31 6.48 13.6 13.8 42 7.50 11.8 11.8 43 8.67 10.2 10.2 05 9.59 9.2 9.2 63 10.64 8.3 8.2 26 2.78 31.7 31.7 10 $r = 86.1 ^{\circ}C$ cooling $T = 79.0 ^{\circ}C$ cooling $T = 79.0 ^{\circ}C$ cooling $T = 60 ^{\circ}C$ cooling 4.58 19.3 19.2 11 38.5 5.28 16.7 16.7 200 2.12 41.6 41.6 11 a = $T = 60 ^{\circ}C$ cooling 4.58 19.3 33.6 33.6 20 67.2 5.27 16.7 16.8 40 6.29 14.0 13.9 33 8.33 10.6 10.7 53 10.32 8.6 8.6 46			4.54	19.4	19.3	31	b =
$ \mathbf{9c} \qquad \begin{array}{c} & & 8.97 & 9.8 & 9.7 & 05 \\ 12.55 & 7.0 & 7.1 & 65 \\ 11.2 & 7.9 & 7.8 & 55 \\ 12.6 & 7.0 & 7.0 & 46 \\ \hline & 2.19 & 40.3 & 40.3 & 11 & a = \\ & & & & & & & & & & & & \\ 2.69 & 32.8 & 32.8 & 20 & 65.6 \\ \hline & & & & & & & & & & & & & \\ 3.46 & 25.4 & 25.5 & 02 & b = \\ & & & & & & & & & & & & \\ 4.34 & 20.3 & 20.1 & 31 & & & & & \\ 6.48 & 13.6 & 13.8 & 42 & & & & \\ & & & & & & & & & & & \\ 4.34 & 20.3 & 20.1 & 31 & & & & \\ 6.48 & 13.6 & 13.8 & 42 & & & & \\ 7.50 & 11.8 & 11.8 & 43 & & & \\ 8.67 & 10.2 & 10.2 & 05 & & & \\ 9.59 & 9.2 & 9.2 & 63 & & & \\ 10.64 & 8.3 & 8.2 & 26 & & & \\ 7.8 & 10.2 & 10.2 & 05 & & & \\ 9.59 & 9.2 & 9.2 & 63 & & & \\ 10.64 & 8.3 & 8.2 & 26 & & & \\ 7.8 & 10.64 & 8.3 & 8.2 & 26 & & & \\ 10.64 & 8.3 & 8.2 & 26 & & & & \\ 8.67 & 15.6 & 15.8 & 20 & & & & \\ 7.8 & 10.64 & 8.3 & 11 & 36.6 & & \\ 5.67 & 15.6 & 15.8 & 20 & & & & \\ 7.8 & 10.3 & 19.2 & 11 & 38.5 & & \\ 5.28 & 16.7 & 16.7 & 20 & & & \\ 7.8 & 19.3 & 19.2 & 11 & & & & \\ 7.8 & 10.7 & 16.7 & 20 & & & & \\ 7.8 & 19.4 & & & & & & & \\ 7.8 & 19.4 & & & & & & & \\ 7.8 & 19.4 & & & & & & & \\ 7.8 & 10.7 & 16.7 & 16.8 & 40 & & & & \\ 6.29 & 14.0 & 13.9 & 33 & & & \\ 8.33 & 10.6 & 10.7 & 53 & & \\ 8.33 & 10.6 & 10.7 & 53 & & \\ 10.32 & 8.6 & 8.6 & 46 & & \\ \end{array}$			6.78	13.0	12.8	33	48.3
$ \mathbf{9c} \qquad \qquad$			8.97	9.8	9.7	05	
9c Colr $T = 83.8 \ ^{\circ}C \ cooling$ $T = 83.8 \ ^{\circ}C \ cooling$ $T = 83.8 \ ^{\circ}C \ cooling$ 2.69 32.8 32.8 203.46 25.4 25.5 024.34 20.3 20.1 316.48 13.6 13.8 427.50 11.8 11.8 438.67 10.2 10.2 059.59 9.2 9.2 6310.64 8.3 8.2 262.78 31.7 31.7 10 $a =T = 86.1 \ ^{\circ}C \ cooling4.81$ 18.3 18.3 $1136.65.67$ 15.6 15.8 206.67 15.6 15.8 205.28 16.7 16.7 $20Col_rT = 60 \ ^{\circ}C \ cooling2.63$ 33.6 33.6 20 $67.24.56$ $19.45.27$ 16.7 16.8 406.29 14.0 13.9 338.33 10.6 10.7 5310.32 8.6 8.6 46			12.55	7.0	7.1	65	
9cColr 12.6 7.07.046 $7 = 83.8 °C cooling$ 2.69 32.8 32.8 20.0 65.6 3.46 25.4 25.5 02 $b =$ 4.34 20.3 20.1 31 51.1 6.48 13.6 13.8 42 7.50 11.8 11.8 43 6.48 13.6 13.8 42 7.50 11.8 11.8 43 8.67 10.2 10.2 05 9.59 9.2 9.2 63 9.59 9.2 9.2 63 10.64 8.3 8.2 26 2.78 31.7 31.7 10 $a =$ $7 = 86.1 °C$ cooling 4.81 18.3 18.3 11 36.6 5.67 15.6 15.8 20 20 33.3 33.3 10 $a =$ $7 = 79.0 °C$ cooling 4.58 19.3 19.2 11 38.5 52.8 16.7 16.7 20 Col_r 2.12 41.6 41.6 11 $a =$ 53.0 53.0 53.0 $7 = 60 °C$ cooling 2.63 33.6 33.6 20 67.2 53.0 6.29 14.0 13.9 33 33.3 10.6 10.7 53 10.32 8.6 8.6 46 46 46 46 46			11.2	7.9	7.8	55	
9cColr 2.19 40.3 40.3 11 $a =$ $T = 83.8 ^\circ$ C cooling 2.69 32.8 32.8 32.8 20 65.6 3.46 25.4 25.5 02 $b =$ 4.34 20.3 20.1 31 51.1 6.48 13.6 13.8 42 7.50 11.8 11.8 43 8.67 10.2 10.2 05 9.59 9.2 9.2 63 $7 = 86.1 ^\circ$ C cooling 4.81 18.3 18.3 11 $a =$ $7 = 86.1 ^\circ$ C cooling 4.81 18.3 18.3 11 $a =$ $7 = 79.0 ^\circ$ C cooling 4.58 19.3 19.2 11 38.5 5.28 16.7 16.7 20 20 67.2 Col_r 2.12 41.6 41.6 11 $a =$ $T = 60 ^\circ$ C cooling 2.63 33.6 33.6 20 67.2 4.56 19.4 5.27 16.7 16.8 40 53.0 6.29 14.0 13.9 33 8.33 10.6 10.7 53 10.32 8.6 8.6 46 46 46 46			12.6	7.0	7.0	46	
$ \begin{array}{c cccc} & 7 = 83.8 \ ^{\circ} C \ cooling & 2.69 & 32.8 & 32.8 & 20 & 65.6 \\ & 3.46 & 25.4 & 25.5 & 02 & b = \\ & 4.34 & 20.3 & 20.1 & 31 & 51.1 \\ & 6.48 & 13.6 & 13.8 & 42 & \\ & 7.50 & 11.8 & 11.8 & 43 & \\ & 8.67 & 10.2 & 10.2 & 05 & \\ & 9.59 & 9.2 & 9.2 & 63 & \\ & 10.64 & 8.3 & 8.2 & 26 & \\ & 2.78 & 31.7 & 31.7 & 10 & a = \\ & 7 = 86.1 \ ^{\circ} C \ cooling & 4.81 & 18.3 & 18.3 & 11 & 36.6 \\ & 5.67 & 15.6 & 15.8 & 20 & \\ & 7 = 79.0 \ ^{\circ} C \ cooling & 4.58 & 19.3 & 19.2 & 11 & 38.5 \\ & 7 = 60 \ ^{\circ} C \ cooling & 2.63 & 33.6 & 33.6 & 20 & 67.2 \\ & & 7 = 60 \ ^{\circ} C \ cooling & 2.63 & 33.6 & 33.6 & 20 & 67.2 \\ & & & 5.27 & 16.7 & 16.8 & 40 & \\ & & & 5.27 & 16.7 & 16.8 & 40 & \\ & & & & 5.27 & 16.7 & 16.8 & 40 & \\ & & & & & & 5.3.0 & \\ & & & & & & & & & & 53.0 \\ & & & & & & & & & & & & & & \\ & & & & & & & & & & & & & & \\ & & & & & & & & & & & & & & \\ & & & & & & & & & & & & & & \\ & & & & & & & & & & & & & & \\ & & & & & & & & & & & & & & \\ & & & & & & & & & & & & & & \\ & & & & & & & & & & & & & & & \\ & & & & & & & & & & & & & & & \\ & & & & & & & & & & & & & & & \\ & & & & & & & & & & & & & & & \\ & & & & & & & & & & & & & & & \\ & & & & & & & & & & & & & & \\ & & & & & & & & & & & & & \\ & & & & & & & & & & & & & & \\ & & & & & & & & & & & & & \\ & & & & & & & & & & & & & & \\ & & & & & & & & & & & & & & \\ & & & & & & & & & & & & & & \\ & & & & & & & & & & & & & & \\ & & & & & & & & & & & & & & & \\ & & & & & & & & & & & & & & & & \\ & & & & & & & & & & & & & & & & \\ & & & & & & & & & & & & & & & & & \\ & & & & & & & & & & & & & & & & & & \\ & & & & & & & & & & & & & & & & & & & \\ &$	9c	Colr	2.19	40.3	40.3	11	a =
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		<i>T</i> = 83.8 °C cooling	2.69	32.8	32.8	20	65.6
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			3.46	25.4	25.5	02	b =
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			4.34	20.3	20.1	31	51.1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			6.48	13.6	13.8	42	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			7.50	11.8	11.8	43	
$\begin{array}{c cccc} 9.59 & 9.2 & 9.2 & 63 \\ \hline 10.64 & 8.3 & 8.2 & 26 \\ \hline 2.78 & 31.7 & 31.7 & 10 & a = \\ \hline T = 86.1 \ ^{\circ} C \ cooling & 4.81 & 18.3 & 18.3 & 11 & 36.6 \\ \hline 5.67 & 15.6 & 15.8 & 20 & \\ \hline 5.67 & 15.6 & 15.8 & 20 & \\ \hline 7 = 79.0 \ ^{\circ} C \ cooling & 4.58 & 19.3 & 19.2 & 11 & 38.5 \\ \hline 5.28 & 16.7 & 16.7 & 20 & \\ \hline Col_r & 2.12 & 41.6 & 41.6 & 11 & a = \\ \hline T = 60 \ ^{\circ} C \ cooling & 2.63 & 33.6 & 33.6 & 20 & 67.2 \\ \hline 4.56 & 19.4 & & & b = \\ \hline 5.27 & 16.7 & 16.8 & 40 & \\ \hline 5.27 & 16.7 & 16.8 & 40 & \\ \hline 6.29 & 14.0 & 13.9 & 33 & \\ \hline 8.33 & 10.6 & 10.7 & 53 & \\ \hline 10.32 & 8.6 & 8.6 & 46 & \\ \end{array}$			8.67	10.2	10.2	05	
$\begin{array}{c cccc} & 10.64 & 8.3 & 8.2 & 26 \\ \hline 2.78 & 31.7 & 31.7 & 10 & a = \\ \hline 7 = 86.1 \ ^\circ C \ cooling & 4.81 & 18.3 & 18.3 & 11 & 36.6 \\ \hline 5.67 & 15.6 & 15.8 & 20 & \\ \hline 2.65 & 33.3 & 33.3 & 10 & a = \\ \hline 7 = 79.0 \ ^\circ C \ cooling & 4.58 & 19.3 & 19.2 & 11 & 38.5 \\ \hline 5.28 & 16.7 & 16.7 & 20 & \\ \hline Col_r & 2.12 & 41.6 & 41.6 & 11 & a = \\ \hline T = 60 \ ^\circ C \ cooling & 2.63 & 33.6 & 33.6 & 20 & 67.2 \\ \hline 4.56 & 19.4 & & & b = \\ \hline 5.27 & 16.7 & 16.8 & 40 & \\ \hline 5.27 & 16.7 & 16.8 & 40 & \\ \hline 6.29 & 14.0 & 13.9 & 33 & \\ \hline 8.33 & 10.6 & 10.7 & 53 & \\ \hline 10.32 & 8.6 & 8.6 & 8.6 & 46 & \\ \end{array}$			9.59	9.2	9.2	63	
Colh 2.78 31.7 31.7 10 $a =$ $T = 86.1 ^{\circ}C$ cooling 4.81 18.3 18.3 11 36.6 5.67 15.6 15.8 20 2.65 33.3 33.3 10 $a =$ $T = 79.0 ^{\circ}C$ cooling 4.58 19.3 19.2 11 $7 = 79.0 ^{\circ}C$ cooling 4.58 19.3 19.2 11 5.28 16.7 16.7 20 $Colr$ 2.12 41.6 41.6 11 $T = 60 ^{\circ}C$ cooling 2.63 33.6 33.6 20 67.2 4.56 19.4 $b =$ 5.27 16.7 16.8 40 6.29 14.0 13.9 33 8.33 10.6 10.7 53 10.32 8.6 8.6 46			10.64	8.3	8.2	26	
$\begin{array}{c ccccc} T = 86.1 \ ^{\circ}\text{C cooling} & 4.81 & 18.3 & 18.3 & 11 & 36.6 \\ \hline 5.67 & 15.6 & 15.8 & 20 & & \\ \hline 2.65 & 33.3 & 33.3 & 10 & a = & \\ \hline T = 79.0 \ ^{\circ}\text{C cooling} & 4.58 & 19.3 & 19.2 & 11 & 38.5 \\ \hline 5.28 & 16.7 & 16.7 & 20 & & \\ \hline Col_r & 2.12 & 41.6 & 41.6 & 11 & a = & \\ \hline T = 60 \ ^{\circ}\text{C cooling} & 2.63 & 33.6 & 33.6 & 20 & 67.2 & \\ \hline 4.56 & 19.4 & & & b = & \\ \hline 5.27 & 16.7 & 16.8 & 40 & & \\ \hline 5.27 & 16.7 & 16.8 & 40 & & \\ \hline 6.29 & 14.0 & 13.9 & 33 & \\ \hline 8.33 & 10.6 & 10.7 & 53 & \\ \hline 10.32 & 8.6 & 8.6 & 46 & \\ \end{array}$		Colh	2.78	31.7	31.7	10	a =
9dColh 5.67 15.6 15.8 20 $T = 79.0 ^{\circ}\text{C}$ cooling 4.58 19.3 19.2 11 38.5 5.28 16.7 16.7 20 Colr 2.12 41.6 41.6 11 $a =$ $T = 60 ^{\circ}\text{C}$ cooling 2.63 33.6 33.6 20 67.2 4.56 19.4 $b =$ 52.7 16.7 16.8 40 5.27 16.7 16.8 40 $b =$ 5.27 16.7 16.8 40 6.29 14.0 13.9 33 8.33 10.6 10.7 53 10.32 8.6 8.6 46		T = 86.1 °C cooling	4.81	18.3	18.3	11	36.6
9dColh 2.65 33.3 33.3 10 $a =$ $T = 79.0 ^{\circ}C$ cooling 4.58 19.3 19.2 11 38.5 5.28 16.7 16.7 20 Colr 2.12 41.6 41.6 11 $a =$ $T = 60 ^{\circ}C$ cooling 2.63 33.6 33.6 20 67.2 4.56 19.4 $b =$ 53.0 5.27 16.7 16.8 40 6.29 14.0 13.9 33 8.33 10.6 10.7 53 10.32 8.6 8.6 46			5.67	15.6	15.8	20	
$T = 79.0 \ ^{\circ}\text{C cooling} \qquad \begin{array}{c} 4.58 & 19.3 & 19.2 & 11 \\ 5.28 & 16.7 & 16.7 & 20 \\ \hline \text{Col}_{r} & 2.12 & 41.6 & 41.6 & 11 & a = \\ T = 60 \ ^{\circ}\text{C cooling} & 2.63 & 33.6 & 33.6 & 20 & 67.2 \\ 4.56 & 19.4 & & & b = \\ 5.27 & 16.7 & 16.8 & 40 \\ \hline 6.29 & 14.0 & 13.9 & 33 \\ 8.33 & 10.6 & 10.7 & 53 \\ 10.32 & 8.6 & 8.6 & 46 \end{array}$	9d	Colh	2.65	33.3	33.3	10	a =
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		<i>T</i> = 79.0 °C cooling	4.58	19.3	19.2	11	38.5
Colr 2.12 41.6 41.6 11 $a =$ $T = 60 ^{\circ}\text{C cooling}$ 2.63 33.6 33.6 20 67.2 4.56 19.4 $b =$ 53.0 5.27 16.7 16.8 40 6.29 14.0 13.9 33 8.33 10.6 10.7 53 10.32 8.6 8.6 46			5.28	16.7	16.7	20	
$T = 60 ^{\circ}\text{C}$ cooling2.6333.633.62067.2 4.56 19.4 $b =$ 5.27 16.716.840 6.29 14.013.933 8.33 10.610.753 10.32 8.68.646		Col _r	2.12	41.6	41.6	11	a =
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		T = 60 °C cooling	2.63	33.6	33.6	20	67.2
5.27 16.7 16.8 40 6.29 14.0 13.9 33 8.33 10.6 10.7 53 10.32 8.6 8.6 46			4.56	19.4			b =
6.2914.013.9338.3310.610.75310.328.68.646			5.27	16.7	16.8	40	53.0
8.3310.610.75310.328.68.646			6.29	14.0	13.9	33	
10.32 8.6 8.6 46			8.33	10.6	10.7	53	
			10.32	8.6	8.6	46	

Complex	Phase	2 <i>θ</i> / °	d _{obs} /Å	d _{calc} / Å	hk	a/ Å
10a	Col _h	3.95	22.3	22.3	10	25.7
	<i>T</i> = 105.0 °C cooling	6.88	12.8	12.9	11	
		7.88	11.2	11.2	20	
10b	Col _h	3.74	23.6	23.6	10	27.3
	T = 110 °C cooling	6.44	13.7	13.6	11	
		7.46	11.8	11.8	20	
10c	Colh	3.69	23.9	23.9	10	27.6
	<i>T</i> = 82.7 °C heating	6.38	13.8	13.8	11	
		7.39	11.9	12.0	20	
11a	Col _h	3.63	24.3	24.3	10	28.1
	<i>T</i> = 107.3 °C heating	6.29	14.0	14.0	11	
		7.21	12.2	12.2	20	
11b	Col _h	3.55	24.9	24.9	10	28.8
	<i>T</i> = 90.5 °C heating	6.16	14.3	14.3	11	
		7.12	12.4	12.5	20	
11c	Col _h	3.49	25.3	25.3	10	29.2
	<i>T</i> = 97.2 °C heating	6.10	14.5	14.6	11	
		6.92	12.8	12.7	20	
11d	Col _h	3.46	25.5	25.5	10	29.4
	<i>T</i> = 110.0 °C cooling	6.02	14.7	14.7	11	
		6.97	12.7	12.8	20	
12a	Colh	3.46	25.5	25.5	10	29.4
	<i>T</i> = 160.9 °C heating	5.97	14.8	14.7	11	
		6.96	12.7	12.8	20	
12b	Colh	3.35	26.3	26.3	10	30.4
	<i>T</i> = 120.7 °C cooling	5.82	15.2	15.2	11	
		6.75	13.1	13.2	20	
		8.95	9.9	9.9	21	

 Table S3. X-ray diffraction data for complexes 10 to 13, presenting the measured and calculated spacing, Miller

 indices and calculated parameters (where applicable).

12c	Col _h	3.24	27.2	27.2	10	31.4
	<i>T</i> = 109.5 °C cooling	5.66	15.6	15.7	11	
		6.52	13.5	13.6	20	
		8.65	10.2	10.3	21	
12d	Col _h	3.22	27.4	27.4	10	31.6
	<i>T</i> = 109.5 °C	5.56	15.9	15.8	11	
	cooling	6.43	13.7	13.7	20	
13a	Col _h	3.31	26.7	26.7	10	30.8
	<i>T</i> = 80.5 °C	5.77	15.3	15.3	11	
	heating	6.64	13.3	13.3	20	
		8.72	10.1	10.1	21	
13b	Col _h	3.25	27.2	27.2	10	31.4
	<i>T</i> = 100.6 °C	5.64	15.7	15.7	11	
	heat	6.54	13.5	13.6	20	
		8.65	10.2	10.2	21	
13c	Col _h	3.22	27.4	27.4	10	31.6
	<i>T</i> = 160.9 °C	5.58	15.8	15.8	11	
	cool	6.44	13.7	13.7	20	
		8.52	10.4	10.3	21	
	Lam	2.41	36.6	36.6	001	-
	<i>T</i> = 26.9 °C	4.88	18.1	18.3	002	
	cool	5.39	16.4			
		7.27	12.1	12.2	003	
		20.86	4.3		broad	
13d	Col _h	3.08	28.7	28.7	10	33.1
	<i>T</i> = 100.6 °C	5.34	16.5	16.5	11	
	heat	6.14	14.4	14.4	20	
		8.14	10.8	10.8	21	

Figure S4: Transition temperatures and phases for complexes 6 to 13. The melting point of 7a is shown as a black bar (phase is monotropic).

Figure S5. Cyclic voltammograms of **6a** (black) and **10a** (red), referenced against the ferrocene/ferrocenium couple. The presence of water is marked by an * and should be ignored.

Figure S6. General schematic for the structure of doped-devices with gold(III) emitters (emitter energy levels shown are those calculated for **6a**).

Figure S7. Device performance comparison of 6a at 5 (black), 10 (red) and 15 (blue) wt% in PVK:OXD-7 (7:3)
showing a) current efficiency as a function of current density; b) power efficiency as a function of current density;
c) external quantum efficiency as a function of current density; d) electroluminescence emission profile; e) current density and luminescence as a function of voltage; f) Current efficiency as a function of current density.

Electron Mobility

For the devices, SCLC is described by the formula J = $(9/8)\varepsilon_0\varepsilon_r\mu(V d^{-3})$, where J is the current density, ε_0 is the permittivity under vacuum ($\varepsilon_0 = 8.85 \times 10^{-12} \text{ F m}^{-1}$), ε_r is the dielectric constant ($\varepsilon_r = 3$), μ is the hole/electron mobility, and d is the sample thickness.

Device fabrication and Measurements: The patterned ITO substrates (0.06 cm²) were rinsed with acetone and isopropyl alcohol using sonication for 15 min, followed by 15 min UV-ozone-treatment. After surface treatment, the PEDOT:PSS layer was spin-coated onto the ITO substrate as the hole-injecting layer with a rate of 3200 rpm, and then annealed at 150 °C for 15 min. The ZnO was prepared by spin-coating onto the PEDOT:PSS and then annealed at 200 °C for 15 min. The Au complexes in chloroform (15 mg cm⁻³) were spin-coated with the rate of 1000 rpm, then annealing (**8d**: 90 °C; **12d**: 120 °C;**13d**: 120 °C) or not. The cathode materials were thermally evaporated onto the emitter layer in a vacuum chamber. The thermally evaporated deposition rate is 1.5-1.8 Å s⁻¹ for Al electrode.

Computational Chemistry

All calculations were performed using the TURBOMOLE V6.4 package using the resolution of identity (RI) approximation.⁹⁻¹⁶ Initial optimisations were performed at the (RI-)BP86/SV(P) level with an m5 grid, followed by frequency calculations at the same level. All minima were confirmed as such by the absence of imaginary frequencies. Single-point and TD-DFT calculations on the (RI-)BP86/SV(P) optimised geometries were performed using the hybrid PBE0 functional and the flexible def2-TZVPP basis set with a 60-electron effective core potential. Energies, xyz coordinates and the first 50 lines of the vibrational spectra are presented.

SCF Energy (au) BP86/SV(P) SCF Energy (au) PBE0/def2-TZVPP Zero Point Energy (au) Chemical potential (kJ mol⁻¹) xyz coordinates 51 Au 0.02583 -0.04773 -0.58212 -0.08134 0.09423 1.38095 С 0.14062 -0.19299 Ν -2.63061 С -1.52483 1.28051 -1.11435 -0.74082 0.55170 -3.35961 С -3.23297 С 3.69483 -1.43588 Η 4.49706 -3.93081 -1.71591 С 1.61616 -1.42462 -0.74651 С -1.65908 1.36330 -2.54586 С -2.37139 2.03338 -0.30475 Η -2.29205 1.99282 0.79333 С -3.36171 2.87691 -0.87268 С 2.36166 -2.04920 0.25003 2.16025 -1.85604 1.31581 Η С 0.45907 -4.76659 -0.66921 -1.35742 1.03909 -5.39808 Η С 2.94687 -2.60785 -2.44367 3.18875 -2.83769 -3.49511 Η 3.40354 -0.07992 С -2.95497 0.29400 С -0.38395 -5.34430 0.35605 -0.46125 -6.44243 Н -4.55025 С 1.17994 -1.13015 -1.78692 -5.01338 Η 1.93027 -1.70605 -2.12824 С 1.90884 -3.14505 С 1.09294 -1.02451 С -2.64712 2.20512 -3.09851 Η -2.76796 2.28369 -4.19219 С -3.49715 2.96034 -2.27819 Η -4.25670 3.60672 -2.74109 Ο 4.06444 -3.50514 0.97259 Ο -4.13123 3.56439 0.01187 С -0.14488 0.18728 2.61287 С -0.21700 0.29519 4.03806 С -0.35908 0.50978 6.86665 С 0.88783 0.53416 6.21588 С 0.96237 0.42619 4.82026 С -1.46937 0.27427 4.70960 С -1.53505 0.37805 6.10602 Η -0.41429 0.59359 7.96481 6.80417 Н 1.81529 0.63701 Н 1.93909 0.44375 4.31095 -2.39062 0.17225 Н 4.11414 Н -2.51719 0.35731 6.60780 С 5.11876 -4.42049 0.72481 С -5.14107 4.43106 -0.47797 -4.71398 5.24984 Н -1.10408 -5.62592 Η 4.87343 0.41544 -5.90660 3.87836 -1.07243 Н 0.14791 5.94857 -3.94776 Н 0.17592 4.76075 -5.32349 Н 5.49837 -4.72822 1.71987 Н

6-н

-1381.0627125650

-1380.764732503

0.3838163

846.35

\$vik	prational	l spectrum	(first 50 lines)			
# n	node	symmetry	wave number	IR intensity	selection	on rules
#			cm**(-1)	km/mol	IR	RAMAN
	1		0.00	0.0000	-	-
	2		0.00	0.0000	-	-
	3		0.00	0.0000	-	-
	4		0.00	0.0000	-	-
	5		0.00	0.0000	-	-
	6		0.00	0.0000	-	-
	7	a	7.48	0.03981	YES	YES
	8	a	16.95	0.11771	YES	YES
	9	а	18.45	0.03222	YES	YES
	10	а	29.37	3.41086	YES	YES
	11	а	56.17	0.00224	YES	YES
	12	a	77.37	0.35631	YES	YES
	13	a	81.83	0.92929	YES	YES
	14	a	85.97	0.00073	YES	YES
	15	a	89.66	0.23850	YES	YES
	16	a	94.31	0.47962	YES	YES
	17	a	100.43	3.55880	YES	YES
	18	a	141 33	0 02554	YES	YES
	19	a	150 93	0.75501	YES	YES
	20	a	179 59	0 01847	VES	VES
	21	a	185 46	1 23813	VES	VES
	22	2	186 90	0 00839	VES	VES
	22	2	221 04	0.000000	VEC	VEC
	23	a	221.04	0.40323	IES	ILS
	24	a	225.17	1 15600	IES	ILS
	20	a	225.05	2 01462	IES	IES
	20	a	240.12	5.91405	IES	IES
	27	d	242.74	0.00028	IES	IES
	20	a	247.02	0.00659	ILS	IES
	29	a	270.16	3.38208	YES	YES
	30	a	286.85	0.43979	YES	YES
	31	a	300.60	9.61/86	YES	YES
	32	a	320.69	1.01800	YES	YES
	33	a	320.73	1.2/441	YES	YES
	34	a	336.06	0.266/1	YES	YES
	35	a	368.80	0.1014/	YES	YES
	36	a	394.38	0.71396	YES	YES
	37	a	401.68	0.10086	YES	YES
	38	a	408.35	1.97915	YES	YES
	39	a	426.22	0.08401	YES	YES
	40	а	435.77	3.12034	YES	YES
	41	a	475.59	2.16310	YES	YES
	42	a	486.89	7.14000	YES	YES
	43	a	507.70	0.55743	YES	YES
	44	a	526.49	0.92302	YES	YES
	45	a	531.23	14.98263	YES	YES
	46	a	543.03	3.82574	YES	YES
	47	a	547.35	0.05585	YES	YES
	48	a	565.03	1.10414	YES	YES
	49	a	585.61	18.17709	YES	YES
	50	а	592.80	1.31267	YES	YES

³[6-H] SCF Energy (au) BP86/SV(P) SCF Energy (au) PBE0/def2-TZVPP Zero Point Energy (au) Chemical potential (kJ mol⁻¹) xyz coordinates 51 Au 0.04678 -0.03601 -0.57899 1.38484 -0.06254 0.12278 С 0.17991 -0.16055 -2.59879 Ν С -1.51475 1.26406 -1.11697 С -0.71468 0.60650 -3.36152 С 3.67803 -3.26446 -1.44976 Η 4.47873 -3.96589 -1.72550 С 1.60610 -1.44187 -0.75331 С -1.61506 1.39532 -2.57304 С -2.41604 1.94155 -0.30766 Η -2.36453 1.86585 0.79018 С -3.41172 2.78885 -0.86921 0.24291 С 2.30499 -2.12259 2.08562 -1.95653 1.30949 Η С 0.51087 -4.77536 -0.61686 -1.30689 1.09502 -5.40422 Η -2.45523 С 2.97443 -2.59708 -2.79826 -3.50711 3.23778 Η -0.08854 С 3.34166 -3.03071 С 0.34082 -0.31931 -5.36834 -0.39380 0.41132 -6.46400 Н -4.54137 С 1.22360 -1.08397 1.97360 -1.74745 -4.99695 Η -2.14198 С 1.93066 -1.69242 -3.14187 С 1.12734 -0.99093 -3.11359 С -2.61112 2.27615 Η -2.69941 2.40367 -4.20508 С -3.49540 2.95529 -2.28628 Η -4.25671 3.61118 -2.73361 Ο 3.96953 -3.62283 0.96083 Ο -4.22454 3.41816 0.01943 -0.12668 С 0.22516 2.62130 С -0.19454 0.34569 4.03966 С -0.32747 0.58808 6.86615 С 0.91394 0.66562 6.20648 С 0.98445 0.54734 4.81304 С -1.44198 0.26873 4.72274 С -1.50256 0.38974 6.11648 Η -0.37903 0.68196 7.96358 Н 1.83820 0.82117 6.78792 4.29467 Н 1.95442 0.60935 Н -2.36000 0.11142 4.13464 Н -2.47820 0.32820 6.62720 С 5.05226 -4.50738 0.71839 С -5.19262 4.34569 -0.44658 -4.71845 5.19260 -0.99544 Н -5.70187 Η 4.73632 0.45700 -5.94610 3.85582 -1.10693 Н 5.89016 -3.99665 0.18819 Н 4.73245 -5.39729 0.12687 Η 5.40295 -4.84216 1.71524 Н

-1380.9779862660 -1380.668581507 0.379264 833.36

\$vibrati	onal spectrum	(first 50 lines)			
# mode	symmetry	wave number	IR intensity	selecti	on rules
#		cm**(-1)	km/mol	IR	RAMAN
1		0.00	0.00000	-	-
2		0.00	0.00000	-	_
3		0.00	0.00000	_	_
4		0.00	0.00000	_	_
5		0.00	0.00000	_	_
6		0.00	0.00000	_	_
7	а	11.38	0.67792	YES	YES
8	a	16 72	0 10479	YES	YES
9	a	18 64	0 00766	YES	YES
10	a	27 35	3 49486	YES	YES
11	a	53 43	0 08662	YES	YES
12	a	74 51	0.03787	YES	VES
13	a	79.23	8 25369	VEC	VEG
14	a	92 16	0.25369	VEC	VEC
15	a	03.10	0.43330	IES	IES
10	a	04.00	0.33370	IES	IES
10	d	88.13	2.70953	ILS	IES
1/	d	91.78	0.48841	ILS	IES
18	a	148.11	0.02668	YES	YES
19	a	150.32	0.79323	YES	YES
20	a	169.92	2.42181	YES	YES
21	a	1/8.61	2.80908	YES	YES
22	a	185.14	0.11620	YES	YES
23	a	201.61	3.24570	YES	YES
24	a	224.07	3.44004	YES	YES
25	a	224.31	3.54249	YES	YES
26	а	229.22	0.78598	YES	YES
27	a	237.24	4.64925	YES	YES
28	a	239.86	0.37322	YES	YES
29	a	258.15	1.69966	YES	YES
30	a	281.06	9.11118	YES	YES
31	a	294.83	7.86739	YES	YES
32	a	300.86	7.26716	YES	YES
33	а	318.96	1.46196	YES	YES
34	а	322.30	1.50193	YES	YES
35	a	335.79	10.94679	YES	YES
36	a	390.06	4.77392	YES	YES
37	a	398.25	5.27201	YES	YES
38	а	400.25	0.44543	YES	YES
39	a	404.44	5.71587	YES	YES
40	а	419.14	3.01368	YES	YES
41	а	447.27	8.07839	YES	YES
42	a	477.38	36.37047	YES	YES
43	a	503.35	0.47286	YES	YES
44	a	514.44	7.97084	YES	YES
45	a	520.84	13.67183	YES	YES
46	а	528.09	34.43783	YES	YES
47	a	541.39	2.46744	YES	YES
48	a	560.75	30.04266	YES	YES
49	a	564.37	3.26396	YES	YES
50	a	577 27	35.25224	YES	YES
00	J.	U , , • L ,	~~ •		

6-Et SCF Energy (au) BP86/SV(P) SCF Energy (au) PBE0/def2-TZVPP Zero Point Energy (au) Chemical potential (kJ mol⁻¹) xyz coordinates 57 Au 0.08295 -0.01131 -1.54335 0.41923 -0.02855 0.13347 С 0.19953 -0.16153 -3.59155 Ν С 1.31807 -1.46494 -2.08029 0.58261 -4.32314 С -0.68018 3.74650 -3.20567 -2.38619 С Η 4.54742 -3.90599 -2.66383 С 1.67073 -1.39154 -1.70302 С -1.59792 1.39759 -3.51211 С -2.31125 2.07403 -1.27324 Η -2.23264 2.03584 -0.17498 С -3.30012 2.91723 -1.84405 С 2.41479 -2.01448 -0.70433 2.21299 -1.81776 0.36073 Η С -0.60775 0.48619 -5.72983 -1.29466 1.06558 -6.36330 Η С 3.00000 -2.58228 -3.39615 3.24145 -2.81614 -4.44683 Η С 3.45548 -2.92264 -1.03120 С 0.35434 -0.36010 -6.30465 -0.44041 -7.40253 0.41703 Н -5.50797 С 1.23822 -1.10595 -1.76548 -5.96881 Η 1.98754 -3.08381 С 1.96392 -1.67716 -4.10311 С 1.15032 -0.99648 С -2.58428 2.23944 -4.06767 Η -2.70390 2.31578 -5.16164 С -3.43423 2.99752 -3.24988 Η -4.19274 3.64355 -3.71500 Ο 4.11621 -3.46977 0.02321 Ο -4.06999 3.60757 -0.96178 С -0.09864 0.22544 1.65101 С -0.18010 0.33150 3.07542 С -0.34423 0.55167 5.92855 С 0.90163 0.57343 5.26400 С 0.98942 0.46443 3.87040 -1.43401 С 0.31334 3.74275 С -1.50661 0.41890 5.13733 -0.42896 С 0.62034 7.44147 Н 1.82789 0.68285 5.85529 Н 1.97226 0.48778 3.37316 3.14515 Н -2.35452 0.21686 Н -2.49600 0.40513 5.62782 С 5.16859 -4.38797 -0.22169 С -5.07883 4.47349 -1.45478 -4.65078 5.29048 Н -2.08262 -5.56433 4.91841 Η -0.56297 -2.04860 -5.84413 3.91972 Н 5.99946 -3.91883 Н -0.80007 4.80883 -5.29197 Η -0.76779 5.54767 -4.69336 Η 0.77432 Н -1.36341 1.14965 7.73691 Н 0.41537 1.23223 7.83273 С -0.40119 -0.76741 8.11393

-1459.6278575420 -1459.324239818

0.438186

976.92

Н	0.53628	3 -1.3132	21 7.86720				
H	-1.25257	-1.3958	37 7.77059				
\$vib	rational	spectrum	(first 50 lines)				
# m	iode	symmetry	wave number	IR	intensity	select	ion rules
#			cm**(-1)		km/mol	IR	RAMAN
	1		0.00		0.00000	-	-
	2		0.00		0.00000	-	-
	3		0.00		0.00000	-	-
	4		0.00		0.00000	-	-
	5		0.00		0.00000	_	_
	6		0.00		0.00000	_	_
	7	a	6.49		0.06170	YES	YES
	8	a	13.41		0.19012	YES	YES
	9	а	16.73		0.23745	YES	YES
	10	а	27.34		3.04765	YES	YES
	11	а	38.01		0.10535	YES	YES
	12	a	54.10		0.15333	YES	YES
	13	а	56.18		0.00327	YES	YES
	14	а	75.04		0.25149	YES	YES
	15	a	80.88		0.91581	YES	YES
	16	a	85.95		0.00399	YES	YES
	17	a	86.34		0.59495	YES	YES
	18	a	100.34		3.66109	YES	YES
	19	a	129.00		0.11926	YES	YES
	20	a	141.32		0.03620	YES	YES
	21	a	150 96		0 54455	YES	YES
	22	a	166 16		0 14037	YES	YES
	23	a	186 90		0 01021	YES	YES
	24	a	189 80		0 77115	VES	YES
	25	a	219 54		0 28770	VES	YES
	26	a	221 04		0.20770	VES	YES
	20	2	225.07		0.42730	VFS	VES
	28	2	225.07		1 01/38	VFS	VES
	20	2	220.02		2 88600	VEC	VEC
	30	2	233.10		0.00376	VFS	VES
	31	a	242.92		0.00370	VEC	VEC
	30	a	247.50		3 24604	VEC	VEC
	33	a	205.25		0 38010	VEC	VEC
	21	2	200.75		7 40205	VEC	VEC
	24	a	290.01		7.4939J 5.02214	ILS VEC	IES VEC
	36	a	320 77		0 04074	VEC	VEC
	27	a	225 61		0.04074	ILS VEC	IES VEC
	20	a	333.01 245 02		0.20300	ILS	IES
	20	a	343.03		0.36204	ILD	IES
	39	a	339.29 270 F1		0.05517	ILS	IES
	40	a	372.51		0.01226	ILS	IES
	41	d	402.63		0.16427	ILS	IES
	42	a	408.34		2.U9U91	YES	YES
	43	a	426.25		0.109/1	YES	YES
	44	a	435.65		2.81989	YES	YES
	45	a	453.43		2./62/8	YES	YES
	46	a	475.84		1.93348	YES	YES
	4 /	a	486.89		7.02271	YES	YES
	48	a	508.91		0.58930	YES	YES
	49	а	513.47		0.28362	YES	YES
	50	a	526.97		0.78825	YES	YES

н -0.46538 -0.67679 9.22156

7-OMe SCF Energy (au) BP86/SV(P) SCF Energy (au) PBE0/def2-TZVPP Zero Point Energy (au) Chemical potential (kJ mol⁻¹) xyz coordinates 55 Au -0.02432 -0.13864 -1.25600 0.70204 -0.12416 0.06445 С 0.07876 -0.35148 -3.29957 Ν С 1.07421 -1.65672 -1.81682 -0.85339 0.31158 С -4.04411 3.81588 -3.13459 С -2.03918 С 1.64345 -1.42367 -1.39023 С -1.81004 1.09685 -3.24878 С -2.53783 1.80606 -1.02471 Η -2.44427 1.81028 0.07305 С -3.58141 2.56908 -1.61046 С 2.43427 -1.96738 -0.38108 2.23193 -1.74681 0.67921 Η С -0.79112 0.17112 -5.44762 0.68515 -1.51956 -6.09108 Η 3.02271 -2.59112 -3.05970 С 3.26613 -2.84614 -4.10502 Η С 3.52315 -2.82326 -0.69081 0.21461 С -0.63422 -6.00638 0.26951 -0.74872 -7.10164 Н С -1.29669 -5.19676 1.15166 -5.64503 1.93473 -1.92498 Η 1.93798 -1.73882 -2.76438 С -1.14417 -3.79538 С 1.07306 -3.81930 С -2.85106 1.85921 1.89106 -4.91360 Η -2.98689 С -3.73564 2.59313 -3.01635 С -0.18776 0.19091 1.93133 С -0.26510 0.33709 3.35201 С -0.42056 0.62997 6.18436 С 0.82986 0.68292 5.53119 С 0.89822 0.53477 4.13721 С -1.51544 0.29004 4.03152 С -1.59192 0.43032 5.41748 0 -0.60065 0.75882 7.53217 Η 1.87854 0.57590 3.63625 Η -2.43520 0.13661 3.44505 С 0.53507 0.96365 8.35130 1.07148 1.90733 Η 8.08988 8.28735 Н 1.25324 0.11116 Н 0.15676 1.03960 9.39109 0.37280 0 4.22656 -3.29511 3.24265 -0.74192 0 -4.38142 1.76036 0.83761 6.09753 Н Н -2.55963 0.39100 5.94245 С 5.32611 -4.16053 0.14458 -5.44465 4.03062 С -1.25069 -5.07236 4.84912 -1.91130 Н -5.94575 4.47690 -0.36822 Н 3.41314 Η -6.18263 -1.81562 Η 6.12287 -3.66560 -0.45980 Η 5.01195 -5.10116 -0.36675 Н 5.73304 -4.41069 1.14503 Н -4.53626 3.17701 -3.49291

-1495.5055220410

-1495.208858234

0.4153144

920.81

н 4.65385 -3.79556 -2.30363

\$v	ibrationa	al spectrum	(first 50 lines)			
#	mode	symmetry	wave number	IR intensity	selecti	on rules
#			cm**(-1)	km/mol	IR	RAMAN
	1		0.00	0.00000	-	_
	2		0.00	0.0000	_	-
	3		0.00	0.0000	_	-
	4		0.00	0.0000	-	-
	5		0.00	0.0000	_	-
	6		0.00	0.00000	_	_
	7	а	9.01	0.64504	YES	YES
	8	а	13.46	0.20879	YES	YES
	9	а	16.76	0.25982	YES	YES
	10	a	27.73	3.26871	YES	YES
	11	a	56.23	0.00532	YES	YES
	12	a	57.19	0.20097	YES	YES
	13	a	70.23	0.28364	YES	YES
	14	a	80.81	0.93994	YES	YES
	1.5	a	85.05	0.92267	YES	YES
	16	a	86 31	0 00235	YES	YES
	17	a	100 61	3 59573	VES	VES
	18	a	100.01	2 15390	VES	VES
	19	2	1/1 35	0 05996	VES	VES
	20	2	142.33	0.00000	VES	VFS
	20	2	157 13	0.3032	VEC	VEQ
	21	a	172 42	0.03930	ILD	IES VEC
	22	a	196 07	0.42730	ILD	IES VEC
	23	a	200.57	0.01420	IES	IES
	24	d	200.31	2.31/00	IES	IES
	25	d	221.12	0.30973	IES	ILS
	26	a	223.11	0.06/91	YES	YES
	27	a	227.14	1.17706	YES	YES
	28	a	230.73	L.//566	YES	YES
	29	a	243.10	0.01095	YES	YES
	30	a	246.35	2.043/5	YES	YES
	31	a	253.87	3.4//6/	YES	YES
	32	a	262.41	3.09068	YES	YES
	33	a	286.86	0.40351	YES	YES
	34	a	301.38	9.64901	YES	YES
	35	a	309.32	3.69703	YES	YES
	36	a	320.94	0.06636	YES	YES
	37	a	335.61	0.21584	YES	YES
	38	a	339.97	0.44807	YES	YES
	39	a	370.79	0.11401	YES	YES
	40	a	408.28	1.83432	YES	YES
	41	a	411.77	0.34673	YES	YES
	42	a	426.25	0.16471	YES	YES
	43	a	435.34	3.03745	YES	YES
	44	a	439.75	0.57440	YES	YES
	45	a	451.71	0.86192	YES	YES
	46	a	476.01	2.14127	YES	YES
	47	a	486.83	6.94192	YES	YES
	48	а	503.59	4.44609	YES	YES
	49	a	526.43	1.55431	YES	YES
	50	а	531.08	14.94124	YES	YES

8-OMe SCF Energy (au) BP86/SV(P) SCF Energy (au) PBE0/def2-TZVPP Zero Point Energy (au) Chemical potential (kJ mol⁻¹) xyz coordinates 59 Au 0.19681 -0.26470 -1.71879 0.23739 0.11592 -0.03784 С 0.27982 -0.50215 -3.76059 Ν С -1.41110 0.97967 -2.28129 0.17411 -4.50566 С -0.64232 3.96166 -3.35620 С -2.49632 С 1.83312 -1.58979 -1.85071 С -1.57468 0.98988 -3.71219 С -2.27019 1.73895 -1.49086 Η -2.16894 1.75234 -0.39387 С -3.30140 2.51791 -2.07748 С 2.61886 -2.14028 -0.84126 2.42917 -1.90399 0.21800 Η С -0.59386 0.01683 -5.90792 -1.31506 0.54048 -6.55177 Η 3.17328 -2.80620 -3.51706 С 3.40306 -3.07807 -4.56121 Η С 3.68603 -3.02370 -1.14938 С 0.38879 -0.81768 -6.46492 0.43304 -0.94516 -7.55924 Н С -1.49292 -5.65478 1.31620 -2.14445 -6.10164 Η 2.08086 -1.92635 -3.22338 С 2.11034 -1.32315 С 1.25171 -4.25466 1.76876 С -2.60285 -4.28363 -2.74593 -5.37722 Η 1.79191 С -3.46536 2.53034 -3.48241 С 0.06387 0.10325 1.46543 С 0.00295 0.26859 2.88514 С -0.12987 0.58706 5.72051 С 1.10852 0.61991 5.04837 С 1.17573 0.45972 3.65556 С -1.24230 0.25518 3.57032 С -1.32357 0.40873 4.95882 0 -0.28319 0.69496 7.07497 Η 2.15417 0.48035 3.15101 Η -2.18080 0.11150 3.01415 0 -2.55627 0.31413 5.55735 С 0.87516 0.82927 7.87794 Н 1.44169 1.76121 7.63935 Н 1.55722 -0.04705 7.76703 Н 0.51899 0.88062 8.92689 С -3.03637 1.47660 6.22799 -3.10581 2.34391 5.52776 Н Н -2.39461 1.75404 7.09352 Н -4.05454 1.22570 6.59184 0 4.38656 -3.49964 -0.08569 -4.08076 3.21761 -1.21065 0 2.04256 0.75886 5.61300 Η Н -4.25665 3.12629 -3.95962 4.78254 -4.03879 -2.75949 Η С -5.13260 4.01995 -1.72045 С 5.46548 -4.39102 -0.31224 Н -4.75001 4.82359 -2.39335

-1609.9391332850

-1609.644128610

0.4463643

991.40

Н	-5.61826	4.48586	-0.83947
Н	-5.88665	3.41032	-2.27249
Н	5.87417	-4.63915	0.68800
Н	6.26820	-3.91993	-0.92770
Н	5.12745	-5.33016	-0.81095

\$vi	brationa	l spectrum	(first 50 lines)				
#	mode	symmetry	wave number	IR	intensity	selection	on rules
#			cm**(-1)		km/mol	IR	RAMAN
	1		0.00		0.00000	-	_
	2		0.00		0.00000	-	_
	3		0.00		0.00000	-	_
	4		0.00		0.00000	-	_
	5		0.00		0.00000	-	_
	6		0.00		0.00000	-	-
	7	a	4.23		0.34438	YES	YES
	8	a	12.32		0.37091	YES	YES
	9	a	16.33		0.49738	YES	YES
	10	a	27.35		3.54917	YES	YES
	11	a	51.35		1.09582	YES	YES
	12	a	56.22		0.00553	YES	YES
	13	a	60.93		0.07340	YES	YES
	14	a	75.33		2.35840	YES	YES
	15	a	80.29		1.67624	YES	YES
	16	a	84.57		1.25263	YES	YES
	17	a	86.12		0.00373	YES	YES
	18	a	100.41		3.44766	YES	YES
	19	a	107.26		2.52585	YES	YES
	20	a	129.95		1.55896	YES	YES
	21	a	141.32		0.06228	YES	YES
	22	a	144.50		0.14428	YES	YES
	23	a	149.19		0.44294	YES	YES
	24	a	163.14		1.33556	YES	YES
	25	a	179.28		0.90430	YES	YES
	26	a	186.97		0.01452	YES	YES
	27	a	205.73		0.45447	YES	YES
	28	a	220.87		0.46631	YES	YES
	29	a	224.99		0.03440	YES	YES
	30	a	226.27		0.92602	YES	YES
	31	a	229.83		1.70481	YES	YES
	32	a	237.67		3.04050	YES	YES
	33	a	243.12		0.00296	YES	YES
	34	a	250.71		0.21557	YES	YES
	35	a	265.57		2.56245	YES	YES
	36	a	286.54		0.32607	YES	YES
	37	а	293.96		3.40462	YES	YES
	38	a	301.78		10.55502	YES	YES
	39	a	307.57		7.47002	YES	YES
	40	a	320.95		0.06407	YES	YES
	41	a	335.31		0.40748	YES	YES
	42	a	343.99		2.04535	YES	YES
	43	a	356.13		0.84016	YES	YES
	44	a	371.98		0.18664	YES	YES
	45	a	408.35		1.81681	YES	YES
	46	a	426.25		0.17362	YES	YES
	47	a	435.48		3.07160	YES	YES
	48	a	448.25		2.23724	YES	YES
	49	a	459.19		3.04382	YES	YES
	50	a	473.14		2.87337	YES	YES

9-OMe SCF Energy (au) BP86/SV(P) SCF Energy (au) PBE0/def2-TZVPP Zero Point Energy (au) Chemical potential (kJ mol⁻¹) xyz coordinates 63 Au 0.04497 -0.28914 -1.93615 -0.00621 -0.07876 С 0.02296 0.09856 -0.50979 -3.98074 Ν С 1.00893 -1.53030 -2.46948 0.20140 -4.70946 С -0.81023 3.70353 -3.48788 -2.78245 С С 1.63853 -1.66193 -2.09803 С -1.70875 1.03774 -3.89832 С -2.35640 1.78756 -1.66281 Η -2.24203 1.78848 -0.56699 С -3.36886 2.60396 -2.23095 С 2.41714 -2.24595 -1.10205 2.24594 -2.01392 -0.03869 Η С -0.78153 0.05610 -6.11351 0.60761 -6.74469 -1.49310 Η 2.92213 -2.90397 -3.78962 С 3.13232 -3.17307 -4.83859 Η -3.15966 С 3.45269 -1.42961 С -0.80275 -6.68882 0.16915 0.19773 -0.92127 -7.78465 Н С -1.51353 -5.89511 1.08407 1.82399 -2.18337 -6.35631 Η -1.99429 -3.47661 С 1.89023 -1.35535 -4.49284 С 1.03963 С -2.71837 1.85331 -4.45125 -5.54290 Η -2.87276 1.89081 С -3.54778 2.63416 -3.63374 С -0.03834 0.05134 1.25284 С -0.07541 0.20143 2.67590 С -0.14720 0.48719 5.49876 С 1.08275 0.58867 4.79742 С 1.12109 0.44046 3.39849 С -1.30810 0.11117 3.37048 С -1.34441 0.26054 4.77013 0 -0.19041 0.56063 6.86598 0 2.17913 0.82169 5.58001 Η 2.06559 0.50785 2.84258 -0.06940 Η -2.22369 2.79193 0.19954 0 -2.48021 5.52405 1.87524 С -0.12578 7.41068 2.50092 -0.98244 7.06370 Н Н 0.83147 2.38225 7.14788 Н -0.18539 1.76210 8.51355 С -3.70717 -0.05864 4.86864 -3.69869 -1.04401 4.34439 Н Н -3.96234 0.73897 4.13006 Η -4.48154 -0.07781 5.66262 С 3.44746 0.89462 4.95580 3.50435 1.73540 4.22366 Η Η 3.70601 -0.05644 4.43239 5.76893 Η 4.18070 1.07174 0 4.14888 -3.66703 -0.37795 0 -4.11594 3.32031 -1.34934 Н -4.32510 3.25895 -4.09678

-1724.3771649480 -1724.084343638 0.4776731 1064.93

Η	4.49994	-4.19317	-3.06049
С	-5.14478	4.16315	-1.84088
С	5.19283	-4.59474	-0.62331
Н	-4.74138	4.95984	-2.50978
Н	-5.60555	4.63669	-0.95066
Н	-5.92450	3.58509	-2.39123
Η	6.00602	-4.14715	-1.24252
Η	4.81591	-5.51615	-1.12701
Η	5.60190	-4.86664	0.37054

\$vibrational spectrum (first 50 lines)

#	mode	symmetry	wave number	IR intensity	selecti	on rules
#			cm**(-1)	km/mol	IR	RAMAN
	1		0.00	0.0000	-	-
	2		0.00	0.0000	-	-
	3		0.00	0.0000	-	_
	4		0.00	0.00000	_	_
	5		0.00	0.0000	-	_
	6		0.00	0.00000	_	_
	7	a	5.35	0.05642	YES	YES
	8	a	11.86	0.09718	YES	YES
	9	a	16.11	0.21335	YES	YES
	10	a	26.71	2.33852	YES	YES
	11	a	36.30	3.30537	YES	YES
	12	a	52.48	1.39913	YES	YES
	13	a	56.22	0.07064	YES	YES
	14	a	56.25	0.99352	YES	YES
	15	a	71.66	2.79872	YES	YES
	16	a	78.56	0.77588	YES	YES
	17	a	84.38	1.16515	YES	YES
	18	a	86.14	0.00207	YES	YES
	19	a	100.39	3.57485	YES	YES
	20	a	108.66	0.00265	YES	YES
	21	a	119.80	2.47917	YES	YES
	22	a	133.84	0.42700	YES	YES
	23	a	141.34	0.05991	YES	YES
	24	a	150.17	0.17286	YES	YES
	25	a	150.56	0.39372	YES	YES
	26	a	179.50	0.26465	YES	YES
	27	a	186.97	0.01600	YES	YES
	28	a	190.29	0.82657	YES	YES
	29	a	200.62	0.23183	YES	YES
	30	a	216.36	1.43844	YES	YES
	31	a	221.00	0.46868	YES	YES
	32	a	224.18	0.67599	YES	YES
	33	a	225.50	0.15358	YES	YES
	34	a	236.83	4.29294	YES	YES
	35	a	239.11	4.74695	YES	YES
	36	a	243.09	0.00269	YES	YES
	37	a	254.17	1.11939	YES	YES
	38	a	259.29	3.52165	YES	YES
	39	a	279.72	3.87806	YES	YES
	40	a	286.92	0.83323	YES	YES
	41	a	292.17	0.18119	YES	YES
	42	a	297 43	4 04039	YES	YES
	43	a	308 35	13 43631	YES	YES
	44	a	320 93	0.06007	YES	YES
	4.5	a	335 64	0.16267	YES	YES
	46	a	345 96	3.53939	YES	YES
	47	a	360 11	0,05491	YES	YES
	48	a	370 94	0 87531	YES	YES
	49	a	394 42	2.56373	YES	YES
	50	a	408 36	1.75714	YES	YES

10-Et SCF Energy (au) BP86/SV(P) SCF Energy (au) PBE0/def2-TZVPP Zero Point Energy (au) Chemical potential (kJ mol⁻¹) xyz coordinates 65 Au -0.10346 -0.11064 -1.09574 -0.21631 0.08315 С 0.86317 0.00465 -0.30736 -3.13947 Ν С -1.74035 1.09294 -1.65722 -0.93325 0.35532 С -3.87750 3.76653 -3.08126 С -1.91446 0 4.80085 -3.94942 -2.14851 С 1.57289 -1.38146 -1.24288 С -1.89390 1.12685 -3.07626 С -2.63343 1.82178 -0.85747 Η -2.50805 1.79326 0.23526 С -3.67388 2.58106 -1.42957 С 2.38995 -1.92396 -0.24732 2.20230 -1.71102 0.81715 Η -0.86879 0.22527 -5.28332 С 0.73834 -5.92420 -1.60008 Η -2.92455 С 2.96299 -2.52881 -2.77630 3.17391 -3.97516 Η -2.75621 С 3.49095 -0.54780 0.14326 С -0.56809 -5.84709 -0.67348 -6.94331 0.19952 Н С 1.08584 -1.22962 -5.04276 -5.49684 Η 1.87409 -1.84709 -2.60994 С 1.87217 -1.68242 -3.63958 С 1.00491 -1.08827 С -2.94236 1.88862 -3.65875 Η -3.05921 1.91245 -4.75209 С -3.83043 2.61242 -2.85564 Ο -4.86528 3.37186 -3.31299 Ο 4.18210 -3.24165 0.51849 Ο -4.57643 3.31427 -0.73301 С -0.29487 0.20679 2.09201 С -0.38272 0.34770 3.51297 С -0.55976 0.63217 6.36471 С 0.65924 0.83162 5.68422 С 0.75172 0.69156 4.29113 -1.61256 С 0.14753 4.19829 С -1.69017 0.28609 5.58745 0.77210 С -0.70463 7.87382 Н 1.56676 1.10172 6.24761 1.71693 3.78452 Н 0.85120 Н -2.50810 -0.12599 3.61747 -2.65944 Н 0.12081 6.09096 С 5.59388 -3.44527 0.46983 -4.48254 С 3.33858 0.68364 -4.61149 2.32119 1.12106 Н -5.30591 1.03163 Η 3.99429 -3.50736 3.75841 Н 1.02371 5.92428 -3.48146 1.52910 Η Η 6.10787 -2.60053 -0.04268 5.86204 -4.39567 Η -0.03721 С -5.07570 3.44697 -4.70871 С 5.11215 -4.29205 -3.48512 Н -5.95513 4.10672 -4.85361

S52

-1688.4974938730

-1688.195495855

0.5008318

1123.19

Н	-5.29581	2.44491	-5.15041
Н	-4.19752	3.88971	-5.23827
Н	5.40371	-3.39773	-4.08675
Н	4.25949	-4.80627	-3.98992
Н	5.97323	-4.98885	-3.43265
С	0.56239	1.13569	8.65581
Н	0.97898	2.11622	8.33519
Н	1.36015	0.37081	8.52820
Н	0.33953	1.20737	9.74281
Н	-1.49152	1.53572	8.08184
Н	-1.11882	-0.18254	8.27676

\$vibrational spectrum (first 50 lines)

#	mode	symmetry	wave number	IR intensity	selecti	on rules
#			cm**(-1)	km/mol	IR	RAMAN
	1		0.00	0.0000	_	-
	2		0.00	0.00000	_	_
	3		0.00	0.0000	_	_
	4		0.00	0.00000	_	_
	5		0.00	0.00000	_	_
	6		0.00	0.0000	_	_
	7	a	7.44	0.04939	YES	YES
	8	a	12.69	0.12094	YES	YES
	9	a	15.99	0.47999	YES	YES
	10	a	22.79	1.46875	YES	YES
	11	a	33.53	0.12791	YES	YES
	12	a	34.68	0.38400	YES	YES
	13	a	45 53	2 34280	YES	YES
	14	a	57 19	3 65914	YES	YES
	15	a	64 51	0 40769	YES	YES
	16	a	67 68	0.48998	VES	YES
	17	2	69.66	0.40550	VES	VES
	18	2	0J.00 77 73	1 01859	VES	VES
	10	2	03 88	7 00341	VEC	VEC
	20	2	111 / 8	0 1/59/	VEC	VEC
	20	a	122 /2	0.03060	VEC	VEC
	21	a	137 04	0.03909	IES VEC	IES
	22	a	116 26	0.03129	IES	IES
	23	a	140.20	0.40090	IES	IES
	24	d	154.55 1ee co	0.4/141	IES	IES
	25	d	155.08	0.18398	IES	IES
	26	a	164.10	2.04307	YES	YES
	27	a	173.24	0.31845	YES	YES
	28	a	1/6.49	0.13/45	YES	YES
	29	a	189.74	0.27048	YES	YES
	30	a	200.28	0.42432	YES	YES
	31	a	209.04	2.59093	YES	YES
	32	a	214.64	3.13/58	YES	YES
	33	a	221.12	0.549/5	YES	YES
	34	a	229.49	1.36391	YES	YES
	35	a	238.49	0.34579	YES	YES
	36	a	240.78	0.97671	YES	YES
	37	a	259.88	0.36864	YES	YES
	38	a	275.75	0.75457	YES	YES
	39	a	282.71	11.94828	YES	YES
	40	a	287.03	0.24883	YES	YES
	41	a	294.58	0.08474	YES	YES
	42	a	317.60	4.06318	YES	YES
	43	a	323.13	4.94366	YES	YES
	44	a	327.39	2.67527	YES	YES
	45	a	336.05	3.94460	YES	YES
	46	a	354.29	0.96290	YES	YES
	47	a	378.21	2.67423	YES	YES
	48	a	391.26	13.66244	YES	YES
				S53		

49	a	402.78	0.08502	YES	YES
50	a	403.00	0.92220	YES	YES

10-H SCF Energy (au) BP86/SV(P) SCF Energy (au) PBE0/def2-TZVPP Zero Point Energy (au) Chemical potential (kJ mol⁻¹) xyz coordinates 59 Au -0.06037 -0.09264 -0.08518 1.87721 -0.12574 0.07520 С 0.01148 -0.25932 -2.13419 Ν С -1.65960 1.17997 -0.60189 -0.90713 0.45187 С -2.84983 3.67808 -3.19848 С -1.00658 0 4.67459 -4.10179 -1.26947 С 1.56160 -1.42594 -0.27709 С -1.82853 1.24505 -2.02175 С -2.51294 1.93610 0.20595 Η -2.41006 1.92586 1.30275 С -3.53218 2.75192 -0.33306 2.36891 С -2.01740 0.69805 2.20318 -1.81535 1.76829 Η С -0.86474 0.34509 -4.25789 -1.58171 0.89878 -4.88095 Η С 2.88406 -2.59766 -1.99622 3.07174 -2.83539 -3.05346 Η С 3.43254 -2.88690 0.36919 С -0.47755 0.10848 -4.84810 -0.56585 -5.94652 0.14773 Н С 1.03357 -1.18876 -4.06678 -1.82769 -4.54122 Η 1.79220 -1.71461 -1.65302 С 1.83132 -2.66025 С 0.97526 -1.06945 2.04695 -2.57505 С -2.85651 Η -2.99764 2.07473 -3.66539 С -3.71889 2.78855 -1.75215 Ο -4.76553 3.53946 -2.21966 Ο 4.11613 -3.41579 1.41886 Ο -4.31231 3.40804 0.56722 -0.16662 С 0.18853 3.10849 С -0.21490 0.32016 4.53252 С -0.31097 0.58415 7.35916 С 0.92128 0.64405 6.68322 С 0.97315 0.51182 5.28866 С -1.45234 0.26355 5.22935 С -1.49519 0.39195 6.62459 Η -0.34834 0.68694 8.45648 Н 1.85519 0.79397 7.25091 1.93847 0.55693 Н 4.75970 -2.38014 0.11451 Н 4.65435 -2.46602 Н 0.34279 7.14608 С 5.51447 -3.69262 1.34723 С -4.82996 4.71206 0.30377 -4.06481 5.36169 -0.17873 Н -5.08887 Η 5.13393 1.29746 4.68018 -5.73654 -0.33608 Н 5.85672 -3.75839 Н 2.40125 Η 6.06507 -2.87036 0.83649 Η 5.72480 -4.64999 0.82635 С -4.98107 3.61114 -3.61586 С 4.95633 -4.43152 -2.61580 Н -5.86156 4.26993 -3.75891

-1609.9281049430 -1609.630666720 0.4458342 988.03

Η	-5.20374	2.60801	-4.05227
Н	-4.10541	4.05269	-4.14972
Н	5.27462	-3.53804	-3.20502
Н	4.07862	-4.90370	-3.11874
Н	5.79073	-5.16135	-2.58679

\$v	ibration	al spectrum	(first 50 lines)			
#	mode	symmetry	wave number	IR intensity	selectio	on rules
#			cm**(-1)	km/mol	IR	RAMAN
	1		0.00	0.00000	-	-
	2		0.00	0.00000	_	-
	3		0.00	0.00000	-	-
	4		0.00	0.00000	-	-
	5		0.00	0.00000	-	-
	6		0.00	0.00000	-	-
	7	a	6.81	0.03841	YES	YES
	8	a	15.81	0.11429	YES	YES
	9	a	18.08	0.19353	YES	YES
	10	a	23.16	2.60763	YES	YES
	11	a	34.60	1.10529	YES	YES
	12	a	44.05	1.01804	YES	YES
	13	a	53.08	8.54710	YES	YES
	14	a	61.92	2.33438	YES	YES
	15	a	71.71	2.85497	YES	YES
	16	a	80.28	2.89913	YES	YES
	17	a	82.07	0.36617	YES	YES
	18	a	91.13	0.06788	YES	YES
	19	а	100.30	3.99418	YES	YES
	20	а	113.59	0.65384	YES	YES
	21	а	144.94	1.67792	YES	YES
	22	a	148.94	1.68379	YES	YES
	23	a	152.09	0.21050	YES	YES
	24	a	159.78	0.04367	YES	YES
	25	a	172.75	0.27678	YES	YES
	26	a	180.65	0.04331	YES	YES
	27	a	182.51	3.19505	YES	YES
	28	a	196.14	0.88967	YES	YES
	29	a	212.32	1.54262	YES	YES
	30	a	212.87	1.65610	YES	YES
	31	a	225.86	0.84112	YES	YES
	32	a	230.07	0.68442	YES	YES
	33	a	238.78	0.46750	YES	YES
	34	a	243.83	2.96936	YES	YES
	35	a	267.51	0.97199	YES	YES
	36	a	279.95	2.39770	YES	YES
	37	a	286 55	5 63960	YES	YES
	38	a	299 76	0 75961	YES	YES
	39	a	317 34	13 64811	YES	YES
	40	a	328 61	3 92641	YES	YES
	40	a	331 33	2 46314	VES	VES
	42	a	345 05	5 63141	VES	VES
	43	a	354 67	4 29477	VES	VES
	43	a 2	384 44	3 67916	VES	VFS
	15 15	a 2	307.44	0 50071	VEG	VFC
	ч.) 16	a	JJZ.47 101 75	0.30071	TEO VEC	VFC VFC
	40	a	401.75	U.IZZUI 1 0105/	I E O	VEC
	4/ 10	a	410.99	1.91004 1 /5050	ILD	1ES VEC
	40	a	420.02 157 15	1.4303Z	ILD	ILD
	49 50	d	457.15	0.31213	ILS	ILD
	50	a	458.9/	0./9/62	IES	IES

11-0Me SCF Energy (au) BP86/SV(P) SCF Energy (au) PBE0/def2-TZVPP Zero Point Energy (au) Chemical potential (kJ mol⁻¹) xyz coordinates 63 Au -0.13333 -0.09332 -0.82366 -0.23728 0.10269 С 1.13567 -0.03323 -0.28855 -2.86810 Ν С -1.77242 1.11012 -1.37773 -0.97342 0.37550 С -3.60196 3.73116 С -3.06633 -1.65995 0 4.76365 -3.93560 -1.89890 С 1.54226 -1.36412 -0.97838 С -1.93105 1.14608 -2.79622 С -2.66312 1.83724 -0.57373 Η -2.53331 1.80698 0.51846 С -3.70604 2.59672 -1.14095 С 2.36203 -1.90952 0.01349 2.17791 -1.69774 1.07883 Η С -0.91344 0.24798 -5.00825 -5.64586 0.76214 -1.64683 Η -2.66650 С 2.92495 -2.51134 -2.75776 3.13176 -3.71820 Η -2.74304 С 3.46055 -0.29195 С -0.54437 -5.57670 0.09678 -0.64788 0.14947 -6.67328 Н С -1.20734 -4.77651 1.04195 -5.23421 Η 1.82852 -1.82434 -2.34686 С 1.83629 -1.66402 -3.37285 С 0.96554 -1.06828 С -2.98125 1.90919 -3.37389 Η -3.10152 1.93531 -4.46680 С -3.86679 2.63126 -2.56649 Ο -4.90308 3.39182 -3.01913 Ο 4.15455 -3.23182 0.77132 Ο -4.60753 3.32719 -0.43998 С -0.30943 0.23267 2.36439 С -0.39096 0.38247 3.78466 С -0.55499 0.68790 6.61629 С 0.67522 0.87632 5.94997 С 0.74827 0.72174 4.55687 С -1.62095 0.19757 4.47784 С -1.70168 0.34485 5.86303 0 -0.73745 0.81162 7.96431 Н 1.58691 1.14221 6.50556 Н 1.71300 0.86974 4.04596 -0.07256 Н -2.52105 3.90285 Н -2.65338 0.19802 6.39820 С 5.56586 -3.43613 0.71754 С -4.51054 3.34662 0.97654 -4.63713 2.32749 Н 1.41060 -5.33402 Η 3.99997 1.32871 1.31603 -3.53517 3.76650 Н 5.89972 -3.47629 Н 1.77563 Η 6.07895 -2.58993 0.20639 Η 5.83210 -4.38482 0.20627 С -5.11725 3.47028 -4.41400 С 5.06987 -4.27636 -3.23709 Н -5.99714 4.13031 -4.55498

-1724.3764529870

-1724.081207337

0.4778749

1066.09

Η	-5.33844	2.46931	-4.85765
Н	-4.24054	3.91435	-4.94492
Н	5.36043	-3.38140	-3.83829
Н	4.21485	-4.78864	-3.73992
Н	5.93024	-4.97438	-3.18881
С	0.37566	1.14894	8.77072
Н	0.80212	2.14355	8.49593
Н	1.18305	0.38043	8.70730
Н	0.00015	1.19280	9.81336

\$vibrational spectrum (first 50 lines)

# mod	de symmetry	wave number	IR intensity	selecti	on rules
#		cm**(-1)	km/mol	IR	RAMAN
1	L	0.00	0.00000	-	-
2	2	0.00	0.00000	-	-
	3	0.00	0.00000	-	-
Z	1	0.00	0.00000	-	-
	5	0.00	0.00000	-	-
6	ô	0.00	0.00000	-	-
-	7 a	8.49	0.66683	YES	YES
8	3 а	12.89	0.08484	YES	YES
C) a	16.15	0.42660	YES	YES
10) a	22.92	1.60903	YES	YES
11	l a	34.63	0.38838	YES	YES
12	2 a	45.22	2.30127	YES	YES
13	3 а	55.61	1.09769	YES	YES
14	1 a	58.52	3.10654	YES	YES
15	ā a	68.32	0.57488	YES	YES
16	ã a	70.11	0.50804	YES	YES
17	7 a	77.69	3.94555	YES	YES
18	3 а	93.56	7.33400	YES	YES
19) a	107.63	1.53879	YES	YES
20) a	111.83	0.08373	YES	YES
21	l a	133.45	0.29710	YES	YES
22	2 a	138.55	0.23761	YES	YES
23	 3 a	148.70	0.43955	YES	YES
24	α 1 a	1.54.79	0.76613	YES	YES
2.5	ā a	156.79	0.30980	YES	YES
26	ñ a	164.17	1.89976	YES	YES
25	7 a	175.92	0.18654	YES	YES
28	, <u> </u>	180 94	0 06158	YES	YES
20	a a	197.40	0.30711	YES	YES
.30) a	204.31	0.91940	YES	YES
.31	l a	211.26	2.00417	YES	YES
32	2 <u>a</u>	215 37	5 37429	YES	YES
3:	- u	228 83	1 01303	YES	YES
34	а 1 а	233 12	0 49241	YES	YES
35	ā a	240.03	0.75276	YES	YES
36	f a	251.49	3.21836	YES	YES
31	7 a	259 65	0 03294	YES	YES
38	, <u>a</u> 3 a	261 23	1 70606	YES	YES
30) a	282 88	12 42439	YES	YES
4 () a	286 90	0 26937	YES	YES
41	l a	292 90	0 55797	YES	YES
42	2 a	317 83	4 84545	YES	YES
4 7	- u 3 a	324 71	3 49407	YES	YES
4	2 u 1 a	330 42	6 94122	VES	YES
_± - ⊿ ⊑	. u	340 07	0 52020	VES	YES
-1 C 2 G	a a	354 56	0 69884	VES	YES
-i (Δ Γ	7 a	378 27	2 83487	VES	YES
1 S	, u } a	391 34	13 07460	VES	YES
- <u>+</u> C Δ C		411 87	0 26202	VES	YES
-1.		416 94	3 25319	VES	YES
50	, u		0.20010	тцо	

12-0Me SCF Energy (au) BP86/SV(P) SCF Energy (au) PBE0/def2-TZVPP Zero Point Energy (au) Chemical potential (kJ mol⁻¹) xyz coordinates 67 Au 0.06969 -0.18089 -1.26098 0.69538 -0.02027 0.04788 С 0.15782 -0.41085 -3.30231 Ν С 1.01793 -1.56901 -1.82622 -0.78378 0.24442 С -4.04220 С 3.91625 -3.18503 -2.06757 0 4.94300 -4.06360 -2.29724 С 1.73905 -1.46120 -1.40330 С -1.73485 1.03114 -3.24431 С -2.45471 1.75924 -1.02970 Η -2.32009 1.74569 0.06224 С -3.49931 2.51103 -1.60398 2.56179 С -1.99338 -0.40674 2.38423 -1.76287 0.65583 Η 0.09300 -0.73201 С -5.44644 0.59950 -6.08869 -1.46669 Η С 3.10721 -2.64333 -3.07908 3.30677 -2.90907 -4.12746 Η С -2.83696 -0.70389 3.65487 0.27190 С -0.71297 -6.00691 -0.83560 -7.10182 0.31785 Н С -1.36585 -5.20078 1.21903 -1.99284 -5.65229 Η 2.00124 -1.78527 -2.76810 С 2.02446 -3.79926 С 1.15077 -1.20298 С -2.78652 1.78678 -3.82905 Η -2.91259 1.79488 -4.92159 С -3.66667 2.52352 -3.02906 Ο -4.70363 3.27895 -3.48882 Ο 4.35274 -3.31030 0.36386 Ο -4.39694 3.25334 -0.91033 С -0.08074 0.19447 1.92274 С -0.14272 0.36284 3.34213 С -0.27398 0.68172 6.17875 С 0.95369 0.79433 5.49559 С 1.02061 0.63471 4.10279 С -1.37840 0.27035 4.03836 С -1.45965 0.42432 5.42719 -0.42108 0 0.78036 7.53479 Н 1.88121 0.99486 6.05237 Н 1.99156 0.71804 3.59040 Н -2.30946 0.05816 3.49152 -2.68079 0 0.25043 6.03154 С 5.76255 -3.52323 0.30544 С -4.29560 3.29141 0.50539 -4.42158 2.27825 0.95335 Н -5.11759 3.95004 0.85130 Η -3.31887 3.71514 Н 0.83625 6.10245 -3.54655 Η 1.36212 Η 6.27717 -2.68905 -0.22361 Η 6.02066 -4.48227 -0.19046 С -4.92525 3.33424 -4.88362 С 5.23959 -4.42926 -3.63099 Н -5.80465 3.99354 -5.03100

S59

-1838.8100353840

-1838.516408622

0.5089504

1137.59

Н	-5.15076	2.32634	-5.30904
Н	-4.05063	3.76752	-5.42679
Н	5.53140	-3.54651	-4.24941
Н	4.37896	-4.94560	-4.11989
Н	6.09652	-5.13096	-3.57549
С	0.73397	0.98763	8.32720
Н	1.23730	1.95425	8.08502
Н	1.46948	0.15684	8.20827
Н	0.38510	1.01480	9.37948
С	-3.22213	1.36727	6.73200
Н	-3.33803	2.24818	6.05494
Н	-2.59639	1.65652	7.60502
Н	-4.22552	1.05256	7.08716

\$vibrational spectrum (first 50 lines)

#	mode	symmetry	wave number	IR intensity	selecti	on rules
#			cm**(-1)	km/mol	IR	RAMAN
	1		0.00	0.00000	-	-
	2		0.00	0.0000	_	-
	3		0.00	0.00000	_	-
	4		0.00	0.0000	_	-
	5		0.00	0.00000	-	-
	6		0.00	0.00000	_	-
	7	a	5.66	0.36450	YES	YES
	8	a	11.39	0.25481	YES	YES
	9	a	15.57	0.66711	YES	YES
	10	a	22.80	1.72667	YES	YES
	11	a	34.63	0.38922	YES	YES
	12	a	45.07	2.51820	YES	YES
	13	a	51 16	0 79043	YES	YES
	14	a	55 70	3 01332	YES	VES
	15	a	62 65	0 98156	YES	VES
	16	2	68 46	0.90100	VES	VES
	17	2	73 /3	3 16669	VES	VES
	1.8	2	77 52	1 29/92	VEC	VEC
	10	a	02 10	7 69700	VEC	VEC
	20	a	95.40 106 55	1 25706	IES VEC	ILD
	20	a	100.33 111 04	L.33700	IES	IES
	21	a	111.84	0.11038	IES	IES
	22	a	128.44	2.13065	IES	IES
	23	a	133.90	0.13154	YES	YES
	24	a	138.//	0.4/6/8	YES	YES
	25	a	143.28	0.50130	YES	YES
	26	a	149.06	0.27752	YES	YES
	27	a	156.42	0.30604	YES	YES
	28	a	163.90	1.78647	YES	YES
	29	a	165.13	1.56789	YES	YES
	30	a	176.05	0.16843	YES	YES
	31	a	184.42	0.11255	YES	YES
	32	a	199.56	0.54251	YES	YES
	33	a	203.98	1.04273	YES	YES
	34	а	212.55	0.27487	YES	YES
	35	а	216.31	6.32720	YES	YES
	36	a	221.28	0.22142	YES	YES
	37	a	229.85	1.32321	YES	YES
	38	a	240.03	0.67649	YES	YES
	39	а	244.52	1.17679	YES	YES
	40	a	260.01	0.22571	YES	YES
	41	a	264.74	1.26574	YES	YES
	42	a	281.71	10.66279	YES	YES
	43	a	287.07	0.19415	YES	YES
	44	a	291.20	2.93743	YES	YES
	45	a	299.81	2.44724	YES	YES
	46	a	316.31	5.45711	YES	YES

47	a	319.83	5.72818	YES	YES
48	a	330.17	9.40594	YES	YES
49	a	345.69	1.47490	YES	YES
50	a	354.16	0.45436	YES	YES

13-0Me SCF Energy (au) BP86/SV(P) SCF Energy (au) PBE0/def2-TZVPP Zero Point Energy (au) Chemical potential (kJ mol⁻¹) xyz coordinates 71 -0.01642 -0.21658 -1.47297 Au -0.04615 0.01365 0.48530 С 0.00695 -0.44528 -3.51664 Ν С -1.51170 1.17048 -2.00473 -0.86307 0.32111 -4.23699 С 3.43065 -3.65223 С -2.35853 0 4.34228 -4.64434 -2.60910 С 1.48519 -1.68636 -1.64966 С -1.70053 1.21026 -3.41929 С -2.29152 2.00377 -1.18882 Η -2.14111 1.96724 -0.09945 С -3.25236 2.87468 -1.74078 С 2.25627 -2.31708 -0.66949 2.12730 -2.07210 0.39685 Η С -0.85458 0.17200 -5.64241 -1.53503 0.76552 -6.26967 Η С 2.67388 -3.01323 -3.35364 2.82265 -3.29467 -4.40634 Η С 3.23591 -3.28326 -0.98904 0.03629 -0.74473 С -6.22342 0.04823 -0.86593 -7.31939 Н -5.43683 С -1.51003 0.91296 -2.22331 -5.90449 Η 1.60676 1.70576 -3.02043 С -2.03487 -1.34754 -4.03367 С 0.88944 2.08599 -3.98158 С -2.66789 Η -2.81187 2.11496 -5.07156 С -3.44257 2.91479 -3.16259 Ο -4.39369 3.78706 -3.60010 0 3.89023 -3.84214 0.06408 0 -4.04540 3.71111 -1.02752 С -0.07257 0.16473 1.71307 С -0.10179 0.33714 3.13419 С -0.15203 0.67025 5.95323 С 0.75714 1.41495 5.15748 0.78621 С 1.24858 3.76011 С -1.01827 -0.40267 3.92352 -0.22991 С -1.04929 5.32084 0.77104 0 -0.14526 7.31982 1.57385 2.26456 0 5.85088 1.48993 Н 1.81129 3.13253 3.41982 Н -1.69933 -1.10136 0 -1.90060 -0.88732 6.16082 С 5.26430 -4.21945 -0.01821 С -3.91478 3.72856 0.38651 -4.14687 2.73363 0.83279 H -4.64976 4.47448 Η 0.75038 -2.89026 4.03609 0.70065 Н 5.61600 -4.28664 Η 1.03261 5.86458 -3.44942 Η -0.55404 5.39910 -5.20024 Н -0.52033 С -4.63315 3.87549 -4.99036 С 4.57183 -5.03483 -3.94911 Н -5.43321 4.63253 -5.11865

-1953.2481300990

-1952.956669995

0.5402214

1210.42

Н	-4.98115	2.90271	-5.41489
Н	-3.72454	4.20824	-5.54837
Н	4.95503	-4.18892	-4.56911
Н	3.64855	-5.44392	-4.42501
Н	5.34129	-5.83245	-3.91075
С	-0.79927	1.91846	7.85237
Н	-1.87837	1.93990	7.56745
Н	-0.31066	2.86274	7.51737
Н	-0.72008	1.84156	8.95716
С	-2.79206	-1.83536	5.60589
Н	-2.24968	-2.66403	5.09121
Н	-3.50274	-1.36780	4.88250
Н	-3.36633	-2.25291	6.45810
С	2.54152	3.00493	5.13073
Н	2.07227	3.69704	4.39101
Н	3.25790	2.33795	4.59482
Н	3.09568	3.60147	5.88391

\$vibrational spectrum (first 50 lines)

# cm**(-1) km/mol IR RAMAN 1 0.00 0.00000 - - 2 0.00 0.00000 - - 3 0.00 0.00000 - - 5 0.00 0.00000 - - 6 0.00 0.00000 - - 7 a 5.72 0.08890 YES YES 9 a 10.65 0.07928 YES YES 10 a 22.13 1.09014 YES YES 11 a 34.62 0.31682 YES YES 12 a 36.95 3.14799 YES YES 14 a 52.09 0.45646 YES YES 15 a 67.20 0.74623 YES YES 16 a 60.437 7.25 3.59673 YES YES 19 a 77.25 3.59673 <th>#</th> <th>mode</th> <th>symmetry</th> <th>wave number</th> <th>IR intensity</th> <th>selecti</th> <th>on rules</th>	#	mode	symmetry	wave number	IR intensity	selecti	on rules
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	#			cm**(-1)	km/mol	IR	RAMAN
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		1		0.00	0.0000	_	_
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		2		0.00	0.0000	_	_
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		3		0.00	0.0000	_	_
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		4		0.00	0.00000	_	_
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		5		0.00	0.0000	_	_
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		6		0.00	0.0000	_	_
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		7	а	5.72	0.08890	YES	YES
9a15.15 0.43269 YESYES10a22.13 1.09014 YESYES11a 34.62 0.31682 YESYES12a 36.95 3.14799 YESYES13a 44.35 1.09899 YESYES14a 52.09 0.45646 YESYES15a 53.47 4.73243 YESYES16a 60.48 1.70669 YESYES17a 67.20 0.74623 YESYES18a 72.65 3.52193 YESYES19a 77.25 3.59673 YESYES20a 93.65 6.40757 YESYES21a 110.26 0.27855 YESYES22a 111.25 0.27855 YESYES23a 120.36 3.26435 YESYES24a 129.34 0.11927 YESYES25a 133.18 0.22934 YESYES26a 143.09 0.03744 YESYES28a 151.05 0.28231 YESYES30a 163.83 2.14751 YESYES31a 175.09 0.11219 YESYES32a 189.13 0.66368 YESYES33a 203.64 0.72198 YESYES <td< td=""><td></td><td>8</td><td>а</td><td>10.65</td><td>0.07928</td><td>YES</td><td>YES</td></td<>		8	а	10.65	0.07928	YES	YES
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		9	a	15.15	0.43269	YES	YES
11a 34.62 0.31682 YESYES12a 36.95 3.14799 YESYES13a 44.35 1.09899 YESYES14a 52.09 0.45646 YESYES15a 53.47 4.73243 YESYES16a 60.48 1.70669 YESYES17a 67.20 0.74623 YESYES18a 72.65 3.52193 YESYES19a 77.25 3.59673 YESYES20a 93.65 6.40757 YESYES21a 108.84 0.01587 YESYES23a 120.36 3.26435 YESYES24a 129.34 0.11927 YESYES25a 133.18 0.22934 YESYES26a 143.09 0.03744 YESYES27a 148.56 0.43859 YESYES28a 151.05 0.28231 YESYES30a 163.83 2.14751 YESYES31a 175.09 0.16664 YESYES33a 189.13 0.66368 YESYES34a 199.38 0.01655 YESYES35a 203.64 0.72198 YESYES36a 203.64 0.72198 YESYES		10	а	22.13	1.09014	YES	YES
12a 36.95 3.14799 YESYES 13 a 44.35 1.09899 YESYES 14 a 52.09 0.45646 YESYES 15 a 53.47 4.73243 YESYES 16 a 60.48 1.70669 YESYES 17 a 67.20 0.74623 YESYES 18 a 72.65 3.52193 YESYES 20 a 93.65 6.40757 YESYES 21 a 108.84 0.01587 YESYES 21 a 120.36 3.26435 YESYES 22 a 111.25 0.27855 YESYES 23 a 120.36 3.26435 YESYES 24 a 129.34 0.11927 YESYES 25 a 133.18 0.22934 YESYES 26 a 143.09 0.03744 YESYES 28 a 151.05 0.28231 YESYES 30 a 163.83 2.14751 YESYES 31 a 199.38 0.01655 YESYES 34 a 199.38 0.01655 YESYES 35 a 203.64 0.72198 YESYES 36 a 217.24 1.87226 YESYES 37 a 213.25 1.08904 YESYES 36 a 217.24 <td></td> <td>11</td> <td>а</td> <td>34.62</td> <td>0.31682</td> <td>YES</td> <td>YES</td>		11	а	34.62	0.31682	YES	YES
13a 44.35 1.09899 YESYES14a 52.09 0.45646 YESYES15a 53.47 4.73243 YESYES16a 60.48 1.70669 YESYES17a 67.20 0.74623 YESYES18a 72.65 3.52193 YESYES19a 77.25 3.59673 YESYES20a 93.65 6.40757 YESYES21a 108.84 0.01587 YESYES22a 111.25 0.27855 YESYES23a 120.36 3.26435 YESYES24a 129.34 0.11927 YESYES25a 133.18 0.22934 YESYES26a 143.09 0.37744 YESYES29a 151.05 0.28231 YESYES31a 175.09 0.16664 YESYES33a 189.13 0.66368 YESYES34a 199.38 0.01655 YESYES35a 203.64 0.72198 YESYES36a 217.24 1.87226 YESYES37a 213.25 1.08904 YESYES38a 217.24 1.87226 YESYES39a 221.61 1.35533 YESYES <td></td> <td>12</td> <td>а</td> <td>36.95</td> <td>3.14799</td> <td>YES</td> <td>YES</td>		12	а	36.95	3.14799	YES	YES
14a 52.09 0.45646 YESYES 15 a 53.47 4.73243 YESYES 16 a 60.48 1.70669 YESYES 17 a 67.20 0.74623 YESYES 18 a 72.65 3.52193 YESYES 19 a 77.25 3.59673 YESYES 20 a 93.65 6.40757 YESYES 21 a 108.84 0.01587 YESYES 22 a 111.25 0.27855 YESYES 23 a 120.36 3.26435 YESYES 24 a 129.34 0.11927 YESYES 25 a 133.18 0.22934 YESYES 26 a 143.09 0.03744 YESYES 27 a 148.56 0.43859 YESYES 28 a 157.19 0.11219 YESYES 30 a 163.83 2.14751 YESYES 31 a 175.09 0.16664 YESYES 32 a 189.13 0.66368 YESYES 34 a 199.38 0.01655 YESYES 35 a 208.18 4.21408 YESYES 36 a 208.18 4.21408 YESYES 37 a 213.25 1.08904 YESYES 38 a 217.24 <td></td> <td>13</td> <td>а</td> <td>44.35</td> <td>1.09899</td> <td>YES</td> <td>YES</td>		13	а	44.35	1.09899	YES	YES
15a 53.47 4.73243 YESYES 16 a 60.48 1.70669 YESYES 17 a 67.20 0.74623 YESYES 18 a 72.65 3.52193 YESYES 19 a 77.25 3.59673 YESYES 20 a 93.65 6.40757 YESYES 21 a 108.84 0.01587 YESYES 22 a 111.25 0.27855 YESYES 23 a 129.34 0.11927 YESYES 24 a 129.34 0.11927 YESYES 25 a 133.18 0.22934 YESYES 26 a 143.09 0.03744 YESYES 27 a 148.56 0.43859 YESYES 28 a 151.05 0.28231 YESYES 29 a 157.19 0.11219 YESYES 30 a 163.83 2.14751 YESYES 31 a 175.09 0.16664 YESYES 33 a 189.13 0.66368 YESYES 34 a 199.38 0.01655 YESYES 36 a 203.64 0.72198 YESYES 37 a 213.25 1.08904 YESYES 38 a 217.24 1.87226 YESYES 39 a 221.61 </td <td></td> <td>14</td> <td>а</td> <td>52.09</td> <td>0.45646</td> <td>YES</td> <td>YES</td>		14	а	52.09	0.45646	YES	YES
16a 60.48 1.70669 YESYES 17 a 67.20 0.74623 YESYES 18 a 72.65 3.52193 YESYES 19 a 77.25 3.59673 YESYES 20 a 93.65 6.40757 YESYES 21 a 108.84 0.01587 YESYES 22 a 111.25 0.27855 YESYES 23 a 120.36 3.26435 YESYES 24 a 129.34 0.11927 YESYES 25 a 133.18 0.22934 YESYES 26 a 148.56 0.43859 YESYES 27 a 148.56 0.43859 YESYES 28 a 151.05 0.28231 YESYES 29 a 157.19 0.11219 YESYES 30 a 163.83 2.14751 YESYES 31 a 175.09 0.16664 YESYES 33 a 189.13 0.66368 YESYES 34 a 199.38 0.01655 YESYES 35 a 203.64 0.72198 YESYES 36 a 203.14 4.21408 YESYES 37 a 213.25 1.08904 YESYES 38 a 217.24 1.87226 YESYES 39 a 221.61 <		15	a	53.47	4.73243	YES	YES
17a 67.20 0.74623 YESYES 18 a 72.65 3.52193 YESYES 19 a 77.25 3.59673 YESYES 20 a 93.65 6.40757 YESYES 21 a 108.84 0.01587 YESYES 22 a 111.25 0.27855 YESYES 23 a 120.36 3.26435 YESYES 24 a 129.34 0.11927 YESYES 25 a 133.18 0.22934 YESYES 26 a 143.09 0.03744 YESYES 27 a 148.56 0.43859 YESYES 28 a 157.19 0.11219 YESYES 29 a 157.19 0.11219 YESYES 30 a 163.83 2.14751 YESYES 31 a 175.09 0.16664 YESYES 32 a 183.46 0.24414 YESYES 33 a 189.13 0.66368 YESYES 35 a 203.64 0.72198 YESYES 36 a 208.18 4.21408 YESYES 37 a 213.25 1.08904 YESYES 38 a 217.24 1.87226 YESYES 39 a 221.61 1.35533 YESYES 39 a 221.61		16	a	60.48	1.70669	YES	YES
18a 72.65 3.52193 YESYES 19 a 77.25 3.59673 YESYES 20 a 93.65 6.40757 YESYES 21 a 108.84 0.01587 YESYES 22 a 111.25 0.27855 YESYES 23 a 120.36 3.26435 YESYES 24 a 129.34 0.11927 YESYES 25 a 133.18 0.22934 YESYES 26 a 143.09 0.03744 YESYES 26 a 143.09 0.03744 YESYES 27 a 148.56 0.43859 YESYES 28 a 151.05 0.28231 YESYES 29 a 157.19 0.11219 YESYES 30 a 163.83 2.14751 YESYES 31 a 175.09 0.16664 YESYES 32 a 183.46 0.24414 YESYES 33 a 199.38 0.01655 YESYES 34 a 203.64 0.72198 YESYES 35 a 203.64 0.72198 YESYES 36 a 203.64 0.72198 YESYES 37 a 213.25 1.08904 YESYES 38 a 217.24 1.87226 YESYES 39 a 221.61		17	а	67.20	0.74623	YES	YES
19a 77.25 3.59673 YESYES 20 a 93.65 6.40757 YESYES 21 a 108.84 0.01587 YESYES 22 a 111.25 0.27855 YESYES 23 a 120.36 3.26435 YESYES 24 a 129.34 0.11927 YESYES 25 a 133.18 0.22934 YESYES 26 a 143.09 0.03744 YESYES 27 a 148.56 0.43859 YESYES 28 a 151.05 0.28231 YESYES 29 a 157.19 0.11219 YESYES 30 a 163.83 2.14751 YESYES 31 a 175.09 0.16664 YESYES 33 a 189.13 0.66368 YESYES 34 a 199.38 0.01655 YESYES 35 a 203.64 0.72198 YESYES 36 a 208.18 4.21408 YESYES 37 a 213.25 1.08904 YESYES 38 a 217.24 1.87226 YESYES 39 a 221.61 1.35533 YESYES 41 a 241.12 2.96090 YESYES 42 a 249.15 0.34557 YESYES		18	а	72.65	3.52193	YES	YES
20a 93.65 6.40757 YESYES 21 a 108.84 0.01587 YESYES 22 a 111.25 0.27855 YESYES 23 a 120.36 3.26435 YESYES 24 a 129.34 0.11927 YESYES 25 a 133.18 0.22934 YESYES 26 a 143.09 0.03744 YESYES 26 a 143.09 0.03744 YESYES 27 a 148.56 0.43859 YESYES 28 a 151.05 0.28231 YESYES 29 a 157.19 0.11219 YESYES 30 a 163.83 2.14751 YESYES 31 a 175.09 0.16664 YESYES 32 a 189.13 0.66368 YESYES 33 a 189.13 0.66368 YESYES 34 a 199.38 0.01655 YESYES 35 a 203.64 0.72198 YESYES 36 a 217.24 1.87226 YESYES 39 a 221.61 1.35533 YESYES 41 a 241.12 2.96090 YESYES 42 a 249.15 0.34557 YESYES		19	а	77.25	3.59673	YES	YES
21a108.840.01587YESYES22a111.250.27855YESYES23a120.363.26435YESYES24a129.340.11927YESYES25a133.180.22934YESYES26a143.090.03744YESYES27a148.560.43859YESYES28a151.050.28231YESYES29a157.190.11219YESYES30a163.832.14751YESYES31a175.090.16664YESYES33a189.130.66368YESYES34a199.380.01655YESYES35a203.640.72198YESYES36a213.251.08904YESYES39a221.611.35533YESYES40a235.142.91492YESYES41a241.122.96090YESYES42a249.150.34557YESYES		20	a	93.65	6.40757	YES	YES
22a 111.25 0.27855 YESYES 23 a 120.36 3.26435 YESYES 24 a 129.34 0.11927 YESYES 25 a 133.18 0.22934 YESYES 26 a 143.09 0.03744 YESYES 26 a 143.09 0.03744 YESYES 27 a 148.56 0.43859 YESYES 28 a 151.05 0.28231 YESYES 29 a 157.19 0.11219 YESYES 30 a 163.83 2.14751 YESYES 31 a 175.09 0.16664 YESYES 32 a 183.46 0.24414 YESYES 33 a 189.13 0.66368 YESYES 34 a 199.38 0.01655 YESYES 35 a 203.64 0.72198 YESYES 36 a 217.24 1.87226 YESYES 37 a 213.25 1.08904 YESYES 38 a 217.24 1.87226 YESYES 39 a 221.61 1.35533 YESYES 40 a 235.14 2.91492 YESYES 41 a 241.12 2.96090 YESYES 42 a 249.15 0.34557 YESYES		21	a	108.84	0.01587	YES	YES
23a120.363.26435YESYES24a129.340.11927YESYES25a133.180.22934YESYES26a143.090.03744YESYES27a148.560.43859YESYES28a151.050.28231YESYES29a157.190.11219YESYES30a163.832.14751YESYES31a175.090.16664YESYES32a183.460.24414YESYES33a189.130.66368YESYES34a199.380.01655YESYES35a203.640.72198YESYES36a213.251.08904YESYES39a221.611.35533YESYES40a235.142.91492YESYES42a249.150.34557YESYES		22	а	111.25	0.27855	YES	YES
24a129.340.11927YESYES25a133.180.22934YESYES26a143.090.03744YESYES27a148.560.43859YESYES28a151.050.28231YESYES29a157.190.11219YESYES30a163.832.14751YESYES31a175.090.16664YESYES32a183.460.24414YESYES33a189.130.66368YESYES34a199.380.01655YESYES35a203.640.72198YESYES36a213.251.08904YESYES37a213.251.08904YESYES39a221.611.35533YESYES40a235.142.91492YESYES41a241.122.96090YESYES42a249.150.34557YESYES		23	а	120.36	3.26435	YES	YES
25a133.180.22934YESYES26a143.090.03744YESYES27a148.560.43859YESYES28a151.050.28231YESYES29a157.190.11219YESYES30a163.832.14751YESYES31a175.090.16664YESYES32a183.460.24414YESYES33a189.130.66368YESYES34a199.380.01655YESYES35a203.640.72198YESYES36a213.251.08904YESYES37a213.251.08904YESYES39a221.611.35533YESYES40a235.142.91492YESYES41a241.122.96090YESYES42a249.150.34557YESYES		24	a	129.34	0.11927	YES	YES
26a143.090.03744YESYES27a148.560.43859YESYES28a151.050.28231YESYES29a157.190.11219YESYES30a163.832.14751YESYES31a175.090.16664YESYES32a183.460.24414YESYES33a189.130.66368YESYES34a199.380.01655YESYES35a203.640.72198YESYES36a213.251.08904YESYES37a213.251.08904YESYES39a221.611.35533YESYES40a235.142.91492YESYES41a241.122.96090YESYES42a249.150.34557YESYES		25	а	133.18	0.22934	YES	YES
27a148.560.43859YESYES28a151.050.28231YESYES29a157.190.11219YESYES30a163.832.14751YESYES31a175.090.16664YESYES32a183.460.24414YESYES33a189.130.66368YESYES34a199.380.01655YESYES35a203.640.72198YESYES36a208.184.21408YESYES37a213.251.08904YESYES38a217.241.87226YESYES39a221.611.35533YESYES40a235.142.91492YESYES41a241.122.96090YESYES42a249.150.34557YESYES		26	a	143.09	0.03744	YES	YES
28a151.050.28231YESYES29a157.190.11219YESYES30a163.832.14751YESYES31a175.090.16664YESYES32a183.460.24414YESYES33a189.130.66368YESYES34a199.380.01655YESYES35a203.640.72198YESYES36a208.184.21408YESYES38a217.241.87226YESYES39a221.611.35533YESYES40a235.142.91492YESYES41a241.122.96090YESYES42a249.150.34557YESYES		27	а	148.56	0.43859	YES	YES
29a157.190.11219YESYES30a163.832.14751YESYES31a175.090.16664YESYES32a183.460.24414YESYES33a189.130.66368YESYES34a199.380.01655YESYES35a203.640.72198YESYES36a208.184.21408YESYES37a213.251.08904YESYES38a217.241.87226YESYES39a221.611.35533YESYES40a235.142.91492YESYES41a241.122.96090YESYES42a249.150.34557YESYES		28	a	151.05	0.28231	YES	YES
30a163.832.14751YESYES31a175.090.16664YESYES32a183.460.24414YESYES33a189.130.66368YESYES34a199.380.01655YESYES35a203.640.72198YESYES36a208.184.21408YESYES37a213.251.08904YESYES38a217.241.87226YESYES39a221.611.35533YESYES40a235.142.91492YESYES41a241.122.96090YESYES42a249.150.34557YESYES		29	a	157.19	0.11219	YES	YES
31a175.090.16664YESYES32a183.460.24414YESYES33a189.130.66368YESYES34a199.380.01655YESYES35a203.640.72198YESYES36a208.184.21408YESYES37a213.251.08904YESYES38a217.241.87226YESYES39a221.611.35533YESYES40a235.142.91492YESYES41a241.122.96090YESYES42a249.150.34557YESYES		30	а	163.83	2.14751	YES	YES
32a183.460.24414YESYES33a189.130.66368YESYES34a199.380.01655YESYES35a203.640.72198YESYES36a208.184.21408YESYES37a213.251.08904YESYES38a217.241.87226YESYES39a221.611.35533YESYES40a235.142.91492YESYES41a241.122.96090YESYES42a249.150.34557YESYES		31	а	175.09	0.16664	YES	YES
33a189.130.66368YESYES34a199.380.01655YESYES35a203.640.72198YESYES36a208.184.21408YESYES37a213.251.08904YESYES38a217.241.87226YESYES39a221.611.35533YESYES40a235.142.91492YESYES41a241.122.96090YESYES42a249.150.34557YESYES		32	a	183.46	0.24414	YES	YES
34a199.380.01655YESYES35a203.640.72198YESYES36a208.184.21408YESYES37a213.251.08904YESYES38a217.241.87226YESYES39a221.611.35533YESYES40a235.142.91492YESYES41a241.122.96090YESYES42a249.150.34557YESYES		33	a	189.13	0.66368	YES	YES
35a203.640.72198YESYES36a208.184.21408YESYES37a213.251.08904YESYES38a217.241.87226YESYES39a221.611.35533YESYES40a235.142.91492YESYES41a241.122.96090YESYES42a249.150.34557YESYES		34	a	199.38	0.01655	YES	YES
36a208.184.21408YESYES37a213.251.08904YESYES38a217.241.87226YESYES39a221.611.35533YESYES40a235.142.91492YESYES41a241.122.96090YESYES42a249.150.34557YESYES		35	a	203.64	0.72198	YES	YES
37a213.251.08904YESYES38a217.241.87226YESYES39a221.611.35533YESYES40a235.142.91492YESYES41a241.122.96090YESYES42a249.150.34557YESYES		36	a	208.18	4.21408	YES	YES
38a217.241.87226YESYES39a221.611.35533YESYES40a235.142.91492YESYES41a241.122.96090YESYES42a249.150.34557YESYES		37	a	213.25	1.08904	YES	YES
39a221.611.35533YESYES40a235.142.91492YESYES41a241.122.96090YESYES42a249.150.34557YESYES		38	a	217.24	1.87226	YES	YES
40a235.142.91492YESYES41a241.122.96090YESYES42a249.150.34557YESYES		39	a	221.61	1.35533	YES	YES
41a241.122.96090YESYES42a249.150.34557YESYES		40	a	235.14	2.91492	YES	YES
42 a 249.15 0.34557 YES YES		41	a	241.12	2.96090	YES	YES
		42	a	249.15	0.34557	YES	YES

43	a	257.81	2.40126	YES	YES
44	a	259.65	0.92180	YES	YES
45	a	279.97	5.92303	YES	YES
46	a	283.97	1.38326	YES	YES
47	a	287.11	1.84585	YES	YES
48	a	289.15	5.02818	YES	YES
49	a	292.08	0.09672	YES	YES
50	a	313.65	8.81586	YES	YES

³[**10-H**] SCF Energy (au) BP86/SV(P) SCF Energy (au) PBE0/def2-TZVPP Zero Point Energy (au) Chemical potential (kJ mol⁻¹) xyz coordinates 59 Au -0.01193 -0.04181 -0.11077 1.85763 -0.07512 0.13946 С 0.07241 -0.19403 -2.13195 Ν С -1.62879 1.18648 -0.62371 С 0.51341 -0.87102 -2.88013 С 3.66991 -3.20461 -1.01185 0 4.66704 -4.10662 -1.25479 С 1.56407 -1.41221 -0.30057 С -1.78287 1.28987 -2.07496 С -2.52886 1.86066 0.19861 Η -2.44197 1.80613 1.29540 С -3.55409 2.68187 -0.32309 С 2.30961 -2.05984 0.68817 2.11175 -1.87801 1.75628 Η С -0.82151 0.38433 -4.28548 -1.55108 0.92723 -4.90703 Η -2.01364 С 2.92752 -2.56757 -2.77620 3.15332 -3.06941 Η 3.36944 С -2.93588 0.37386 С -0.43757 -4.89270 0.14452 0.17730 -0.53973 -5.98798 Н -4.08080 С 1.07061 -1.15387 -4.54787 -1.81272 Η 1.81846 -1.68990 С 1.86679 -1.68472 -1.02719 -2.68457 С 1.02339 -2.60440 С -2.81355 2.11925 Η -2.93017 2.20390 -3.69443 С -3.69955 2.79441 -1.76298 Ο -4.74087 3.55751 -2.20179 0 4.00601 -3.50449 1.42954 Ο -4.36560 3.27491 0.58844 С -0.11633 0.25360 3.09207 С -0.16009 0.39113 4.51257 С -0.24652 0.66973 7.33973 С 0.98117 0.75111 6.65652 С 1.02826 0.61487 5.26290 С -1.39286 0.31018 5.21884 С -1.43099 0.44884 6.61254 Η -0.28007 0.77796 8.43662 Н 1.91448 0.92386 7.21871 Н 1.98889 0.68029 4.72761 Н -2.31985 0.13552 4.64977 -2.39759 Н 0.38315 7.14006 С 5.38833 -3.85957 1.39854 С -5.00388 4.53186 0.36313 -4.32030 5.25043 -0.14098 Н -5.26333 4.91548 Η 1.37176 -5.92763 4.42049 -0.24285 Н 5.69688 -3.93469 Н 2.46211 5.99792 -3.07752 Η 0.89337 5.55325 -4.83389 Η 0.89260 С -4.96314 3.68076 -3.59741 С 4.98796 -4.42857 -2.59697 Н -5.85262 4.33247 -3.71036

S65

-1609.8517974340 -1609.541933548

0.4411995

974.87

Н	-5.16946	2.69005	-4.06559
Н	-4.09223	4.15324	-4.10940
Н	5.33500	-3.53201	-3.16321
Н	4.11842	-4.88174	-3.12874
Н	5.81118	-5.16941	-2.54708

\$vibrational spectrum (first 50 lines)

#	mode	symmetry	wave number	IR intensity	selecti	on rules
#			cm**(-1)	km/mol	IR	RAMAN
	1		0.00	0.0000	-	-
	2		0.00	0.0000	-	-
	3		0.00	0.0000	-	-
	4		0.00	0.0000	_	-
	5		0.00	0.0000	_	-
	6		0.00	0.0000	_	-
	7	a	9.31	1.09814	YES	YES
	8	a	15.73	0.07671	YES	YES
	9	a	18.13	0.11895	YES	YES
	10	a	22.46	3.39703	YES	YES
	11	a	31.85	6.14421	YES	YES
	12	a	39.30	1.18654	YES	YES
	13	a	49.70	9.24544	YES	YES
	14	a	56.22	17.62587	YES	YES
	15	a	71.13	1.00251	YES	YES
	16	a	80.46	0.29835	YES	YES
	17	a	85.99	2.90599	YES	YES
	18	a	91.07	0.83044	YES	YES
	19	a	103.42	7.12190	YES	YES
	20	a	121.19	14.19310	YES	YES
	21	a	138.94	29.32670	YES	YES
	22	a	145.59	0.03422	YES	YES
	23	a	155.47	41.22492	YES	YES
	24	a	166.92	1.30878	YES	YES
	25	a	170.37	1.57737	YES	YES
	26	a	178.94	3.10812	YES	YES
	27	a	183.55	0.03202	YES	YES
	2.8	a	192.62	3.83979	YES	YES
	29	a	200.59	4.15380	YES	YES
	30	a	214.60	9.01672	YES	YES
	31	a	217.22	11.57560	YES	YES
	32	a	227 07	1 50105	YES	YES
	33	a	233 49	10 54861	YES	YES
	34	a	240 68	2 65784	YES	YES
	35	a	259.06	0 43878	YES	YES
	36	a	270 00	27 94506	YES	YES
	37	a	276.00	15 40868	YES	YES
	38	a	285 88	1 92262	YES	YES
	39	a	311 16	6 05176	YES	YES
	40	a	323 10	9 89410	VES	VES
	40 41	a	328 50	17 53157	VES	VES
	42	a	339.81	28 49956	VES	VES
	42	a	351 45	52 61644	VES	VES
	10	2	355 09	9 33560	VES	VFS
	 25	a	380 03	131 730/13	VEC VEC	VEC TEO
	-5 46	a	397 02	Δ 2121 <i>/</i>	VEC VEC	VEC TEO
	10	2	100 30 277.02	16 66021	VEG VEG	VEC
	19 19	a	400.39	10.00924 283 17386	1E9 VEG	T L O V L C
	10 70	a	413.00	203.47300 205 17888	1E9 VEG	T L O V L C
	マジ 50	a	433.30	20J.14090 5 85888	1E9 VEG	T L O V L C
	50	a	437.01	7.90000	IEO	TEO

References

- 1. K. Suzuki, A. Kobayashi, S. Kaneko, K. Takehira, T. Yoshihara, H. Ishida, Y. Shiina, S. Oishi and S. Tobita, *Phys. Chem. Chem. Phys.*, 2009, **11**, 9850–9860.
- 2. CrysAlisPro, Oxford Diffraction Ltd. Version 1.171.34.41.
- 3. Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm within CrysAlisPro software, Oxford Diffraction Ltd. Version 1.171.34.40.
- 4. O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. Puschmann, *J. Appl. Crystallogr.*, 2009, **42**, 339-341.
- 5. G. Sheldrick, *Acta Crystallogr. A*, 2015, **71**, 3-8.
- 6. G. Sheldrick, *Acta Crystallogr. A*, 2008, **64**, 112-122.
- 7. T. Cardinaels, J. Ramaekers, P. Nockemann, K. Driesen, K. Van Hecke, L. Van Meervelt, G. Wang, S. De Feyter, E. F. Iglesias, D. Guillon, B. Donnio, K. Binnemans and D. W. Bruce, *Soft Matter*, 2008, **4**, 2172-2185.
- 8. US Pat., US20180237433A1, 2018
- 9. P. Császár and P. Pulay, J. Mol. Struct., 1984, **114**, 31-34.
- 10. R. Ahlrichs, M. Bär, M. Häser, H. Horn and C. Kölmel, *Chem. Phys. Lett*, 1989, **162**, 165-169.
- 11. P. Deglmann, F. Furche and R. Ahlrichs, *Chem. Phys. Lett*, 2002, **362**, 511-518.
- 12. P. Deglmann, K. May, F. Furche and R. Ahlrichs, *Chem. Phys. Lett*, 2004, **384**, 103-107.
- 13. K. Eichkorn, O. Treutler, H. Öhm, M. Häser and R. Ahlrichs, *Chem. Phys. Lett*, 1995, **242**, 652-660.
- 14. K. Eichkorn, F. Weigend, O. Treutler and R. Ahlrichs, *Theor. Chem. Acc.*, 1997, **97**, 119-124.
- 15. O. Treutler and R. Ahlrichs, J. Chem. Phys., 1995, **102**, 346-354.
- 16. M. von Arnim and R. Ahlrichs, *J. Chem. Phys.*, 1999, **111**, 9183-9190.