Supporting Information

Trilayer organic narrowband photodetector with electrically-switchable spectral range and color sensing ability

Dong Shen,^a Zhiqiang Guan,^b Menglin Li,^b Sai-Wing Tsang,^b Wenjun Zhang,^b Ming-Fai Lo, *^a and Chun-Sing Lee*^a

a. Center of Super-Diamond and Advanced Films (COSDAF) and Department of Chemistry, City University of Hong Kong, Hong Kong SAR, P. R. China. E-mail: mingflo@cityu.edu.hk; apcslee@cityu.edu.hk

b. Center of Super-Diamond and Advanced Films (COSDAF) and Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR, P. R. China

E-mail: mingflo@cityu.edu.hk; apcslee@cityu.edu.hk

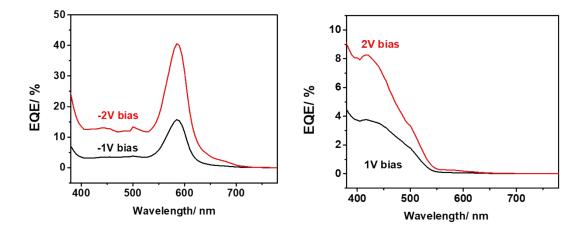


Fig. S1. EQE of the device under -1V, -2V, 1V, 2V, respectively.

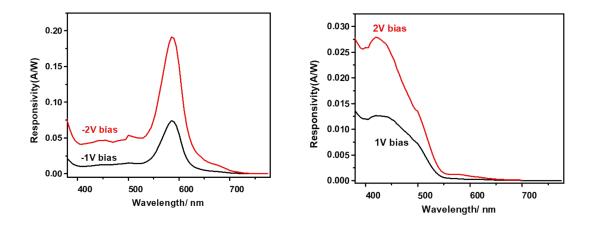


Fig. S2. Responsivities of the device under -1V, -2V, 1V, 2V, respectively.

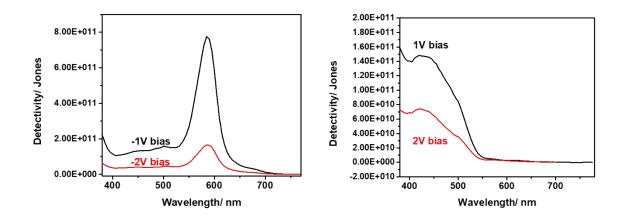


Fig. S3. Detectivities of the device under -1V, -2V, 1V, 2V, respectively.

Assuming the shot noise from the dark current is the main contribution of the noise source, the detectivities were calculated from the equation¹:

$D^{*}=R/(2q/J_{d})^{1/2}$

where R is the responsivity, q is the elemental charge and J_d is the dark current.

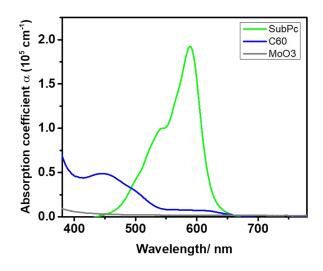


Fig. S4. Absorption coefficients of SubPc, C₆₀ and MoO₃

References

1. X. Gong, M. Tong, Y. Xia, W. Cai, J. S. Moon, Y. Cao, G. Yu, C.-L. Shieh, B. Nilsson and A. J. Heeger, Science, 2009, 325, 1665-1667.