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Hall Concentration and Mobility

Table S1. Hall concentration and Hall mobility of all samples.

Composition nH (cm-3) μH (cm2/Vs)

GeTe 7.5 x 1020 64.9

Ge0.98Re0.02Te 8.1 x 1020 56.6

Ge0.90Sb0.10Te 2.7 x 1020 31.5

Ge0.88Sb0.10Re0.02Te 2.6 x 1020 29.6

Table S2. Physical properties used to model κL in GeTe based on various phonon scattering 
processes.

Parameters Values

vL, m/s 3410
vT, m/s 1995
vm, m/s 2210

Atomic mass, kg 1.66 x 1025

Sample density, g/cm3 6.14
Debye T, K 122

γ 1.45
Poisson’s ratio 0.24

Bulk modulus, GPa 39.9
Young’s Modulus, GPa 62.2

Shear Modulus, GPa 25.5
Grain size, um 10



Table S3. Elemental composition of GeTe with various doping levels of Sb and Re obtained from 
XRF spectra. 

Compound Ge (at%) Re (at%) Sb (at%) Te (at%)

GeTe 46.6 - - 53.4
Ge0.98Re0.02Te 46.7 0.9 - 52.4

Ge0.90Sb0.10Te 41.9 - 4.6 53.5

Ge0.88Sb0.10Re0.02Te 41.7 0.8 4.3 53.2
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Figure S1. The Lorenz number from the Single Parabolic Band for all samples
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Figure S2. Electronic thermal conductivity for all samples
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Figure S3. Phonon relaxation time as a function of frequency for various scattering processes.
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Figure S4. X-ray fluorescence spectra for Ge0.98Re0.02Te

Figure S5. Illustration of precipitation hardening mechanisms, resulting in hardness 
enhancements.1 



Jonker analysis 

In order to obtain Jonker’s plot in Figure 2a, the reduced Fermi level, η was extracted from 

Seebeck value: 

                                                                               (1)

𝑆 =±
𝑘𝐵

𝑒 [𝜂 ‒
(𝑟 +

5
2)𝐹𝑟 + 1.5(𝜂)

(𝑟 +
3
2)𝐹𝑟 + 0.5(𝜂)]

For every Seebeck value, η corresponding to acoustic phonon scattering (r = -0.5) and ionized 

impurity scattering (r = 1.5) can be calculated. Subsequently, the corresponding η values can be 

used to obtain electrical conductivities σ for particular transport coefficient value, :
𝜎𝐸0

                                                                                             (2)
𝜎 = 𝜎𝐸0

ln (1 + 𝑒𝜂)

The results were then plotted as shown in Figure 2a.  can then be estimated by looking at the 
𝜎𝐸0

position and trend of the experimental data from each sample. 

Quality factor B, Transport Coefficients , and Weighted Mobility 
𝜎𝐸0 𝜇𝑊

To understand the nature of transport in more detail, we compute the  from electrical conductivity 
𝜎𝐸0

σ, which can be expressed as: 

                                                                                             (3)
𝜎 = 𝜎𝐸0

ln (1 + 𝑒𝜂)

Essentially, is a convenient expression of electrical conductivity that is independent of carrier 
𝜎𝐸0

concentration. This is especially useful in our case since the carrier concentration values obtained 

via Hall measurements may not be accurate due to the non-linearity of the Hall voltage versus 

magnetic field. (i.e. the Hall carrier concentration is typically taken as the linear slope of Hall 

voltage versus magnetic field, non-linearity in Hall voltage versus magnetic field makes data 

interpretation inaccurate). Large  can be associated with good crystalline quality and vice versa.  
𝜎𝐸0

Furthermore, the carrier mobility-equivalent for  can be expressed as weighted-mobility . The 
𝜎𝐸0 𝜇𝑊

relation between  and  can be expressed as:
𝜎𝐸0  𝜇𝑊



                                              =                                         (4)
𝜎𝐸0

𝑒(2𝑚𝑒𝑘𝐵𝑇)3/2

3𝜋2ℏ3
𝜇𝑊

                                                                                      (5)
𝜇𝑊 =  𝜇0 (𝑚 ∗

𝐷𝑂𝑆

𝑚𝑒 )3/2

The main advantage of using weighted-mobility over inaccurately determined Hall mobility lies in 

the fact that weighted-mobility takes into account the (density of states effective mass). Since 𝑚 ∗
𝐷𝑂𝑆 

the density of states effective mass provides a direct correlation to the Seebeck coefficient, the 

inverse correlation between electrical conductivity and Seebeck coefficient can be clearly accounted 

for by looking at the weighted mobility. Hence, it can be used as a robust indication of the 

thermoelectric power factor. It is important to note that while weighted mobility share some 

similarities with Hall mobility, their magnitude generally differs, especially for compounds with 

high band-degeneracy (high . This comes from the fact that weighted mobility has a 3/2 𝑚 ∗
𝐷𝑂𝑆) 𝑚 ∗

𝐷𝑂𝑆

dependence whereas Hall mobility only depends on (intrinsic mobility) as well as the reduced 𝜇0

Fermi level and scattering mechanism. 

Lastly, the quality factor B can be evaluated from  based on the following:
𝜎𝐸0

                                                      (6)
𝐵 = (𝑘𝐵

𝑒 )2 𝑇
𝑘𝐿

𝜎𝐸0

It is evident from equation 5 that in order to enhance the quality factor,  must be enhanced, either 
𝜎𝐸0

via band convergence, resonant doping, energy filtering, or deformation potential engineering to 

increase . Alternatively, can be reduced via point defects, strain, dislocation, or stacking 𝑚 ∗
𝐷𝑂𝑆 𝑘𝐿 

faults. 

Lorenz Number

The Lorenz number used in this work is calculated from the semiclassical Boltzmann Transport 

Equations under single parabolic band assumption: 

                                                     (7)

𝐿 = (𝑘𝐵

𝑒 )2[(𝑟 +
7
2)𝐹𝑟 + 1.5(𝜂)

(𝑟 +
3
2)𝐹𝑟 + 0.5(𝜂)

‒ ((𝑟 +
5
2)𝐹𝑟 + 1.5(𝜂)

(𝑟 +
3
2)𝐹𝑟 + 0.5(𝜂))2]

Where r represents the carrier scattering exponent, set at -0.5 for acoustic phonon scattering.



Simplified Debye-Callaway model for lattice thermal conductivity

In order to model the lattice thermal conductivity, Debye frequency was first determined from:

                                                                              (8)
𝜔𝑚𝑎𝑥 = 𝜔𝐷 =  (6𝜋2

𝑉 )1/3𝑣𝑚

Where V is the atomic volume and vm was obtained from equation (4). The acoustic branch 

maximum frequency can be expressed as: 

                                                                                                          (9)
𝜔𝑎 =  

𝜔𝐷

𝑁1/3

Where N is the number of atoms per unit cell. 

The Debye temperature  can then be expressed as:𝜃𝐷

                                                          =                                             (10)ℏ𝜔𝐷 𝑘𝐵𝜃𝐷

Subsequently, the phonon relaxation time τ(ω) can be calculated by accounting for contribution 

from Umklapp, grain boundaries, and point defects as following:

                                                                                (11)
𝜏 ‒ 1

𝑈 =  
2

(6𝜋2)1/3

𝑘𝐵𝑉1/3𝛾2𝜔2𝑇

𝑀̅𝑣3

                                                                                                            (12)
𝜏 ‒ 1

𝐵 =  
𝑣
𝑑

                                             (13)
𝜏 ‒ 1

𝑃𝐷 =  
𝑉𝜔4

4𝜋𝑣3 (∑
𝑖

𝑓𝑖(1 ‒
𝑚𝑖

𝑚̅ )2 +  ∑
𝑖

𝑓𝑖(1 ‒
𝑟𝑖

𝑟̅ )2 )
In our case, the spectral heat capacity  can be expressed as:                                                             𝐶𝑠(𝜔)

                                       (14)
                                                                  𝐶𝑠(𝜔) =  

3𝑘𝐵𝜔2

2𝜋2𝑣3

By assuming constant group velocity (sound velocity), we can express the spectral thermal 

conductivity  as:𝜅𝑠(𝜔)

                                                                               (15)     𝜅𝑠(𝜔) =  𝐶𝑠(𝜔)𝑣2𝜏(𝜔)

Finally, the lattice thermal conductivity can be obtained by integrating the spectral thermal 

conductivity over the entire frequency range up to :                                                                           𝜔𝑎

                              (16)
                                              𝜅𝐿 =

1
3

 

𝜔𝑚𝑎𝑥

∫
0

𝐶𝑠(𝜔)𝑣2𝜏(𝜔)𝑑𝜔



In our experiments, we obtained both elastic constant (E) from nanoindentation as well as 

longitudinal sound velocity (vL) from ultrasonic measurements. In order to obtain other elastic 

properties, we made use of the following equations:

                            𝐵 =
𝐸

3(1 ‒ 2𝑣𝑝)
                                              (17)

where B = Bulk modulus; vp = Poisson ratio

Both sides of the above equation can be expressed in terms of vL and vT (longitudinal and 

transverse sound velocity, respectively) as follows:

       
         𝐵 = 𝜌 (𝑣2

𝐿 ‒  
4
3

𝑣2
𝑇)                                              (18)

    

        𝑣𝑝 =

1 ‒ 2(
𝑣𝑇

𝑣𝐿
)2

2 ‒ 2(
𝑣𝑇

𝑣𝐿
)2

                                                           (19)

where ρ = density

The transverse sound velocity vT can then be calculated by substituting equation (2) and (3) into 

equation (1) and solving for vT. Subsequently, the average sound velocity, vm can be determined 

via:

                     
𝑣𝑚 = (1

3[ 1

𝑣3
𝐿

+  
2

𝑣3
𝑇

]) ‒
1
3                                              (20)

Shear modulus μ can be obtained from:

                         𝜇 = 𝜌𝑣2
𝑇                                                 (21)

In addition, after obtaining the poisson ratio vp from equation (3), the Gruneisen parameter γ can 

be determined by: 

                                                     
𝛾 =

3
2( 1 + 𝑣𝑝

2 ‒ 3𝑣𝑝
)                                                    (22)
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