Supporting information

Excellent cryogenic optical thermometry of green up-conversion

in Ho³⁺-doped perovskite Na_{0.5}Bi_{0.5}TiO₃ ceramics

Yuzhen Wang¹, Yanan Wang^{1,3}, Chaoyang Ma^{2,□}, Zhe Feng¹, Chuandong Zuo¹, Wanggui Ye¹, Chong Zhao¹, Yanbin Li¹, Zicheng Wen^{2,4}, Zhiquan Cao⁵, Zhijun Cao⁶, Xiaofei Shen², Chong Wang², Yingkui Li², Xuanyi Yuan¹, Yongge Cao^{2,4, □}

¹ Department of Physics, Renmin University of China, Beijing, 100872, China

² Songshan Lake Materials Laboratory, Dongguan, Guangdong, 523808, China

³ Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China

⁴ Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China

⁵ New York University, New York, NY 10003, USA

⁶ University of Virginia, Charlottesville, VA 22904, USA

^D Corresponding authors: <u>machaoyang@sslab.org.cn</u>

caoyongge@sslab.org.cn

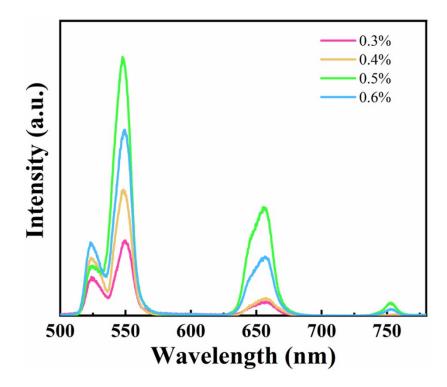


Fig. S1 UCPL of Na_{0.5}Bi_{0.5}TiO₃: *x* at% Ho (*x*=0.3, 0.4, 0.5, 0.6) samples.

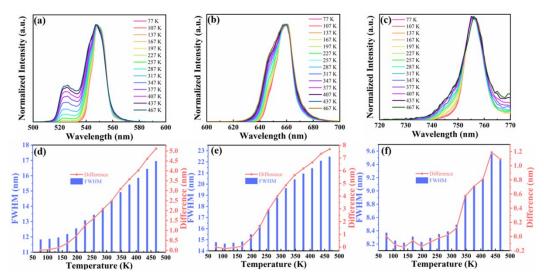


Fig. S2 Normalized up-conversion emission at (a) 548 nm, (b) 654 nm and (c) 753 nm for Ho^{3+} single-doped NBT: Ho sample under various temperatures. The temperature-dependent FWHM and its difference based on 77 K for emission at (d) 548 nm, (e) 654 nm and (f) 753 nm.

As we can see, all the emission peaks generally become widening along with temperature increasing on the whole. This can be interpreted by using Boltzmann distribution (F. Wang, et al. RSC Advances 7, (2017) 27422.):

$$FWHM(T) = W_0 \times \sqrt{\coth \frac{hv}{2kT}}$$
$$W_0 = \sqrt{8 \ln 2} \times hv \times \sqrt{s}$$

where W_0 is the FWHM at 0 K, hv is the vibrational phonon energy. *s* and *k* are Huang-Rhys parameter and the Boltzmann constant, respectively. As the temperature rises, the electron phonon interaction is enhanced and the excited electrons extend to higher energy levels, thus increasing the transition of electrons from different energy levels, and resulting in the increase of FWHM.

Table S1 The energy gaps of ${}^{5}F_{4}$ and ${}^{5}S_{2}$ levels of Ho³⁺-doped different host materials.

Chemical composition	Wavelength	$\Delta E(cm^{-1})$	Ref
$Ca_x(LiHo)_{x/2}Bi_4Ti_4O_{15}(0 \le x \le 1.0)$	530 nm /545 nm		27
$(K_{0.47}Na_{0.47}Li_{0.06})(Nb_{0.94}Bi0_{.06})O_3:0.5Ho$	526 nm /552 nm	613	28
$(K_{0.47}Na_{0.47}Li_{0.06})(Nb_{0.94}Bi0_{.06})O_3$:1.0Ho	526 nm /552 nm	650	20

Na _{0.5} Bi _{0.5} TiO ₃ :0.005Ho	525 nm /548 nm	1023.74	This work
BaTiO ₃ -Na _{0.5} Ho _{0.5} TiO ₃	523 nm /553 nm	933.83	41
ZrO ₂ :Ho	540 nm /550 nm		30
$0.9(K_{0.5}Na_{0.5})NbO_3$ - $0.1SrTiO_3$:0.01Ho	523 nm /551 nm	776.56	29
$0.9(K_{0.5}Na_{0.5})NbO_3-0.1SrTiO_3:0.005Ho$	523 nm /551 nm	846.63	