Supporting Information

Perovskite Quantum Dots Integrated with Vertically Aligned Graphene Toward Ambipolar Multifunctional Photodetectors

Xiaoqiang Feng¹, Zhengyi He¹, Wei Zhu¹, Menghan Zhao¹, Zhiduo Liu², Siwei Yang³, Shiwei Tang¹, Qinglei Guo^{4,6,*}, Zhiwen Jin^{5,*}, Da Chen¹, Guqiao Ding^{1,3} and Gang Wang^{1,*}

¹Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo University, Ningbo 315211, P. R. China.

²State Key Laboratory of Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, P. R. China.

³State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, P. R. China.

⁴School of Microelectronics, Shandong University, Jinan 250100, P. R. China.

⁵School of Physical Science and Technology & Key Laboratory for Magnetism and Magnetic Materials (MoE), Lanzhou University, Lanzhou 730000, P. R. China.

⁶State Key Laboratory of ASIC and Systems, Fudan University, Shanghai 200433, P. R. China.

*Correspondence to: <u>qlguo@sdu.edu.cn (</u>Q. Guo); <u>jinzw@lzu.edu.cn (</u>Z. Jin); <u>gangwang@nbu.edu.cn</u> (G. Wang)

1. Growth of VAGAs

A 300-nm thick SiO₂/Si substrate $(1 \times 1 \text{ cm}^2)$ was placed into a furnace. Next evacuated to almost 3 Pa, a mixture of 1 sccm hydrogen (H₂) and 10 sccm argon (Ar) flowed into the quartz tube. Then, heat the furnace to the desired temperature. Subsequent closing the mixture of H₂ and Ar flow, 5 sccm methane (CH₄) was used to prepare the VAGAs. Finally, the furnace was cooled down to 26 °C. The samples reported in this work were prepared at 550 °C applying a plasma power of 150 W for 40 min unless otherwise stated.

1.1 Growth temperature

As shown in **Fig. S1(a)**, the Raman spectra of VAGAs deposited at different temperatures. Four typical Raman peaks of VAGAs can be seen, the 2D peak at 2689 cm⁻¹, D' peak at 1610 cm⁻¹, G peak at 1581 cm⁻¹ and D peak at 1349 cm⁻¹. As shown in **Fig. S1(b)**, the peak intensity ratio of I_D/I_G decreases from 3.8 to 2.6. In contrast, I_{2D}/I_G increases from 0.1 to 0.76 with the growth temperature increases from 400 to 550 °C, which indicates the crystal quality improvement as growth temperature increases.^[1] Besides, the height of VAGAs is also controlled by growth temperature, as shown in **Figs. S1(c-f)**. The 3D AFM images of VAGAs increased gradually with growth temperature increases can be inferred from atomic force microscopy (AFM) characterization.

S-2

Fig. S1. (a) Raman spectra of the VAGAs directly synthesized on SiO₂ substrates at the different temperatures from 400 to 550 °C with a growth time of 40 min, plasma power of 150 W. (b) Intensity ratios of I_D/I_G and I_{2D}/I_G as a function of growth temperature. (c-f) 3D AFM images of VAGAs on SiO₂ substrates at different temperatures.

1.2 Plasma power

The Raman spectra of VAGAs deposited at various plasma power (75-150 W) are displayed in **Fig. S2(a).** The D-band intensity decreases while 2D-band intensity increases as the plasma power increase from 75 to 150 W. The intensity ratio of I_D/I_G decreases from 2.2 to 1.2 as the plasma power increases, however, the intensity ratio of I_{2D}/I_G increases from 0.25 to 0.85 as shown in **Fig. S2(b).** The height of VAGAs increases with plasma power increases, which can be observed clearly from atomic force microscopy (AFM) characterization shown in **Figs. S2(c-f).**

Fig. S2. (a) Raman spectra of the VAGAs deposited on SiO₂ substrates using different plasma powers with growth temperature of 550 °C and growth time of 40 min. (b) Intensity ratios of I_D/I_G and I_{2D}/I_G as a function of plasma powers. (c-f) AFM images of VAGAs deposited on SiO₂ substrates under different plasma powers and the height corresponding to the white spots of the print.

1.3 Growth time

The size of VAGAs increases with growth time increases, which can be observed clearly from the scanning electron microscopy (SEM) morphology shown in **Figs. S3(a-d).** The D-band decreases while 2D-band increases by prolonging growth time, which can be observed in **Fig. S3(e).** The intensity ratio of I_D/I_G decreases as the plasma power increases, however, the intensity ratio of I_{2D}/I_G increases, as shown in **Fig. S3(f).**

Fig. S3. (a-d) SEM images of VAGAs deposited on SiO₂ substrates under different time. (e) Raman spectra of the VAGAs deposited on SiO₂ substrates with various growth time from 10 to 40 min with deposition temperature at 550 °C and plasma power for 150 W. (f) The I_D/I_G and I_{2D}/I_G as a function of growth time.

2. The characterization of FAPbI₃ QDs

The size-distribution of as-prepared FAPbI₃ QDs is revealed by TEM, which demonstrates that the synthesized FAPbI₃ QDs is relatively uniform. According to the size-distribution histogram (**Fig. S4**, obtained by counting about 120 particles), the average size of the FAPbI₃ QDs is estimated to be 13.5 nm.

Fig. S4. The size distribution histogram of FAPbI₃ QDs.

Fig. S5 exhibits the results of the FT-IR analyses of the FAPbI₃ QDs. The 500-3600 cm⁻¹ region contains eight superposed bands positioned around 592, 1353, 1466, 1712, 2852, 2923, 3267, 3400 cm⁻¹, respectively.^[2]

Fig. S5. FT-IR spectra of FAPbI₃ QDs.

Fig. S6 displays the contact-mode atomic force microscopy (AFM) morphology of FAPbI₃ QDs that are dispersed on the SiO₂ substrate with good uniformity. The inset in Fig. S6 shows the profile of the white dotted line in Fig. S6, and the height of FAPbI₃ QDs is approximately 1.8 ± 0.2 nm.

Fig. S6. Contact-mode AFM image of FAPbI₃ QDs on the SiO₂ substrate.

3. Characterizations of VAGAs under optimal condition

3.1 The VAGAs with special porosity and high surface to volume ratio building

Fig. S7 shows the surface topography of VAGAs and the porosity of VAGAs.

Fig. S7. (a) 3D AFM image of the VAGAs on SiO₂ substrate. (b) The porosity of AGAs on SiO₂ substrate. (c) SEM image of VAGAs/SiO₂.

3.2 Raman mapping

The G-band and 2D-band shift Raman mappings of VAGAs/SiO₂ are also displayed, as shown in **Figs. S8(a-b)**. The uniformity of VAGAs can be inferred. The corresponding G-band and 2D-band displacement histograms of VAGA are shown in **Figs. S8(c-d)**, respectively. By Gauss fitting, it can be known that the G-band position and 2D-band position are at 1581 cm⁻¹ and 2689 cm⁻¹, respectively.

Fig. S8. Two-dimensional Raman maps of (a) G-band position and (b) 2D-band position for VAGAs/SiO₂. (c) G-band frequency histograms of VAGAs/SiO₂. (d) 2D-band frequency histograms of VAGAs/SiO₂.

The corresponding G-band and 2D-band shift distribution histograms of FAPbI₃ QDs functionalization of VAGAs/SiO₂ extracted from Raman mappings are shown in **Fig. S9(a)** and **Fig. S9(b)**. The G-band position is at 1590 cm⁻¹ while the 2D-band position is at 2699 cm⁻¹.

Fig. S9. (a) The G-band frequency histograms of FAPbI₃ QDs functionalization of VAGAs/SiO₂. (b) The 2D-band frequency histograms of FAPbI₃ QDs functionalization of VAGAs/SiO₂.

4. Characterizations of FAPbI₃ QDs/VAGAs heterojunction

4.1 Survey XPS spectra of FAPbI₃ QDs/VAGAs

The Pb state **Fig. S10(a)** reveals two contributions appearing at 136.91 and 138.44 eV, which are attributed to Pb⁰ and Pb²⁺, respectively. The N-1s (**Fig. S10(c)**) state is made of two components appearing at a binding energy of 398.51 and 400.72 eV. These two contributions are associated with the nitrogen from the oleylamine used as a capping ligand and the one from the formamidinium.^[3,4]

Fig. S10. (a) Survey XPS spectra of Pb after functionalization of VAGAs by FAPbI₃
QDs. (b) Survey XPS spectra of I after functionalization of VAGAs by FAPbI₃ QDs.
(c) Survey XPS spectra of N after functionalization of VAGAs by FAPbI₃ QDs.

4.2 The surface morphology and surface potential of the VAGAs/SiO₂ with and without FAPbI₃ QDs

After performing FAPbI₃ QDs functionalization, the surface topography of VAGAs/SiO₂ does not change, and the curves extracted from **Figs. S11(a-e)** indicate that the heights of the five samples are approximately 300 nm.

Fig. S11. (a) Scanning Kelvin probe microscopy (SKPM) morphology of pristine VAGAs/SiO₂ (left) and the height curves of pristine VAGAs/SiO₂ (right). (b) SKPM

morphology of VAGAs/SiO₂ (left) and the height curves of VAGAs/SiO₂ (right) with FAPbI₃ QDs spin-coating speed of 1000 rpm. (c) SKPM morphology of VAGAs/SiO₂ (left) and the height curves of VAGAs/SiO₂ (right) with FAPbI₃ QDs spin-coating speed of 800 rpm. (d) SKPM morphology of VAGAs/SiO₂ (left) and the height curves of VAGAs/SiO₂ (right) with FAPbI₃ QDs spin-coating speed of 600 rpm. (e) SKPM morphology of VAGAs/SiO₂ (right) with FAPbI₃ QDs spin-coating speed of VAGAs/SiO₂ (right) with FAPbI₃ QDs spin-coating speed of 600 rpm. (e) SKPM morphology of VAGAs/SiO₂ (left) and the height curves of VAGAs/SiO₂ (right) with FAPbI₃ QDs spin-coating speed of 400 rpm.

4.3 The surface potential of the VAGAs/SiO₂ and histogram statistics of the surface potential distribution.

Fig. S12. (a) Surface potential distributions of the pristine VAGAs in the dark. (b) Histogram statistics of the surface potential distribution of VAGAs.

4.4 The influence of FAPbI₃ quantum dots concentration on VAGAs/SiO₂ light absorption.

As shown in the **Fig. S13**, as the spin coating speed increases, the light absorption of VAGAs/SiO₂ gradually increases,^[5] which explains that FAPbI₃ quantum dots can effectively improve the light absorption of VAGAs.

Fig. S13. The influence of FAPbI₃ quantum dots concentration on VAGAs/SiO₂ light absorption.

References:

- [1] J. Li, Z. Liu, Q. Guo, S. Yang, A. Xu, Z. Wang, G. Wang, Y. Wang, D. Chen and
- G. Ding, J. Mater. Chem. C, 2019, 7, 5995-6003.
- [2] J. Song, W. Hu, X. F. Wang, G. Chen, W. Tian and T. M, J. Mater. Chem. A, 2016,4, 8435-8443.
- [3] M. Dufour, J. Qu, C. Greboval, C. Méthivier, E. Lhuillier and S. Ithurria, ACS Nano,
- 2019, 13, 5326-5334.
- [4] R. C. Shallcross, Y. Zheng, S. S. Saavedra and N. R. Armstrong, J. Am. Chem. Soc.,
- 2017, 139, 4866-4878.
- [5] S. Chandra, S. J. McCormack, M. Kennedy and J. Doran, Solar Energy, 2015, 115, 552-561.