Supplementary information

One-pot reprecipitation strategy to synthesize CsPbX₃/Pb₃(PO₄)₂ composite nanocrystals

Jun Liu, Qixuan Zhong, Shuhua Chen, Wenhao Guan, Yinghua Qiu, Di Yang, Muhan

Cao*, Qiao Zhang

Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, People's Republic of China.

E-mail: mhcao@suda.edu.cn (M. C.)

Experimental

Materials

All chemicals were used as received without any further purification. Cesium bromide (CsBr, 99.999%), lead bromide (PbBr₂, 99.999%), oleic acid (OA, 90%), oleylamine (OAm, 80-90%), octylamine (C₈H₁₉N, 99%), phosphoric acid (H₃O₄P, 85%) were purchased from Alfa Aesar. N, N-Dimethylformamide (DMF, 99.5%), zinc bromide (ZnBr₂, 99.999%) were provided by Sigma-Aldrich. Didodecylammonium bromide (DDAB, 98%) was obtained from Macklin. Toluene (99.95%) was purchased from Fisher.

Synthesis of CsPbBr₃ NCs

Reprecipitation method was employed for the synthesis of CsPbBr₃ NCs.¹ Typically, 0.1468 g PbBr₂, 0.0851 g CsBr, 0.5 mL OAm, and 1.0 mL OA was added into 10 mL DMF, then the mixture was stirred at 120 °C for 2 h to obtain a clear solution. After cooling down to room temperature, 0.2 mL of the precursor solution was added into 10 mL toluene under vigorous stirring. After 10 seconds, the reaction was stopped, and asobtained precipitate was purified by concentration.

Synthesis of octylammonium phosphate ((C₈H₁₇NH₃)₃PO₄)

Octylamine (10 mmol) and phosphoric acid (31 mmol) were mixed at 0 °C. After 30 min, white precipitate was extracted through vacuum filtration to remove the solvent. The precipitate was washed by hexane twice and dried overnight in an oven.

Synthesis of CsPbBr₃/Pb₃(PO₄)₂ NCs

0.4 mmol octylammonium phosphate was dissolved in 10 mL toluene/isopropanol (v/v 5:1) mixed solution. 0.2 mL of above-mentioned precursor solution was rapidly added into the mixed solution. After stirring for 10 second, the final product was obtained by centrifugation.

Post-treatment of CsPbBr₃ NCs

In ambient condition, 0.4 mL ZnBr₂ (or PbBr₂ or DDAB, 0.1 M, in toluene) was dropwise added into CsPbBr₃ solution and kept mild stirring for 30 minutes. The obtained sample was centrifuged at 9000 rpm for 5 min.

Characterization Methods

Powder X-ray diffraction (XRD) pattern was collected using an Empyrean diffractometer (monochrome Cu K α , λ = 1.54056 Å). UV-vis absorption spectra were acquired using an Evolution 220 spectrophotometer. PL spectra and PLQY values were obtained by a FLUOROMAX-4 spectrofluorometer equipped with a xenon lamp. PL lifetime was recorded by HORTB-FM-2015 fluorescence spectrophotometer. Transmission electron microscope (TEM) images were collected by a transmission electron microscopy (FEI Talos F200X, Thermo Fisher). Fourier transform infrared (FTIR) spectroscopy was performed on a Vertex 70 spectrometer in the range of 4000 to 600 cm⁻¹. X-ray photoelectron spectroscopy (XPS) measurements were carried out through a Shimadzu Ultra DLD with an Al K α source (1486.7 eV). TGA measurement was performed on a Mettler Toledo Switzerland thermogravimetric analyzer.

Fig. S1 Photographs of CsPbBr₃ NCs dispersed in toluene under daylight (left) and UV

light	(right,	λ	=	365	nm).
ingin	(11511,	70		505	

Fig. S2 In-situ PL spectra of (a) CsPbBr₃ and (b) CsPbBr₃/Pb₃(PO₄)₂. Interval is 0.2 s $(0\sim 2 \text{ s}), 0.8 \text{ s} (2\sim 10 \text{ s}).$

It should be mentioned that the final PL emission wavelength in this figure is different from the results in the manuscript, because the *in-situ* PL spectra represent the growth behavior in the raw solution, which was then centrifugated to obtain NCs with narrow size distribution.

Fig. S3 TEM image of $CsPbBr_3$ NCs. Inset shows the corresponding HRTEM image.

Fig. S4 XRD pattern of CsPbBr₃ NCs and the standard pattern of orthorhombic CsPbBr₃.

Fig. S5 (a) Absorbance and PL spectra of CsPbBr₃ NCs. (b) Time-resolved PL lifetime

of

CsPbBr₃

NCs.

Fig. S6 XRD patterns of (a) pristine CsPbBr3 NCs and (b) CsPbBr3/Pb3(PO4)2 storedunderambientconditionforaweek.

Fig. S7 The resistance of CsPbBr₃ NCs and CsPbBr₃/Pb₃(PO₄)₂ NCs against acetone (25%, v/v).

Fig. S8 (a) Comparison of water resistance of $CsPbBr_3/Pb_3(PO_4)_2$ obtained from different concentrations of phosphate, and (b) their corresponding XRD patterns.

Fig. S9 The water resistance of CsPbBr₃ NCs treated by ZnBr₂, PbBr₂ and DDAB, respectively.

Fig. S10 PL intensity change showing the water resistance of CsPbX₃ NCs and CsPbX₃/Pb₃(PO₄)₂ NCs. $X_3 = (a)$ Cl₂Br, (b) ClBr₂, (c) Br₂I, (d) BrI₂.

	CsPbBr ₃			CsPbBr ₃ /Pb ₃ (PO ₄) ₂			
	Cs	Pb	Br	Cs	Pb	Br	Р
XPS	1.00	0.86	3.51	1.00	1.34	4.42	0.41
EDS	1.00	1.01	3.72	1.00	1.47	4.56	0.44

 Table S1 Detailed XPS and EDX results of different samples.

	CsCl	CsBr	CsI	PbCl ₂	PbBr ₂	PbI ₂	Oct-P
	(mmol)	(mmol)	(mmol)	(mmol)	(mmol)	(mmol)	(mM)
CsPbCl ₂ Br		0.4		0.4			0.4
CsPbClBr ₂	0.4				0.4		0.4
CsPbBr ₃		0.4			0.4		0.4
CsPbBr ₂ I			0.4		0.4		0.4
CsPbBrI ₂		0.4				0.4	0.4

Table S2 Detailed synthesis information of the samples prepared by the reprecipitation

 method.

References

1. X. Li, Y. Wu, S. Zhang, B. Cai, Y. Gu, J. Song and H. Zeng, *Adv. Funct. Mater.*, 2016, **26**, 2435-2445.