Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2020

CuS₂ Sheet: Hidden anode material with high capacity for

sodium-ion batteries

Shaohua Lu,*a Weidong Hu,a Xiaojun Hu*a

^a College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014

*To whom correspondence should be addressed: <u>lsh@zjut.edu.cn</u> (S. Lu); huxj@zjut.edu.cn (X. Hu)

Fig. S1. The calculated total energies per atom as a function of length of the vacuum.

Fig. S2. The calculated total energies per atom as a function of cutoff energy.

Fig. S3. The calculated total energies per atom as a function of K point mesh.

Fig. S4. Top and side views of two predicted Cu_2S monolayers ((a) Cu_2S -0(δ - Cu_2S) and (b) Cu_2S -1) with low formation energy.

Fig. S5. Top and side views of the predicted h-CuS monolayer with lowest formation energy.

Fig. S6. Top and side views of obtained CuS_3 monolayer with lowest formation energy.

Fig. S7. Top and side views of obtained CuS_4 monolayer with lowest formation energy.

Fig. S8. 2D electron localization functions maps(side views) of $(a)\alpha$ -CuS₂, $(b)\beta$ -CuS₂, $(c)\gamma$ -CuS₂, $(d)\delta$ -CuS₂, (e)CuS₂(2H-MoS₂) and (f) CuS₂(1T-MoS₂) monolayer; ELF = 0 (blue) and 1 (red) illustrate electron vanishing and accumulated density, respectively.

Fig. S9. The final MD images (viewed from top and side) and total energy curves with molecular dynamics simulated time of α -CuS₂ at (a) 400K, (b) 500K, the total simulated time is 5 ps and the time step is set at 1 fs.

Fig. S10. Three optimized configurations of O_2 adsorbed on α -CuS₂ sheet. The adsorption energy is 0.48, -0.01, and 0.33 eV for (a), (b), and (c).

Fig. S11. Three initial (top panel) and three final (bottom panel) states prepared for NEB calculation of the O replace S chemical reactions.

Fig. S12. The phonon band structure and DOS of the bulk $\mbox{CuS}_2.$

Fig. S13. The partial density of states of α -CuS₂ monolayer are calculated by PBE method, the Fermi level is set at 0 eV.

Fig. S14. The band structure of α -CuS₂ monolayer is calculated by HSE06 method, the Fermi level is set at 0 eV.

Fig. S15. The initial (left panel) and relaxed (right panel) structures of Li adsorbed on α -CuS₂ sheet.

Fig. S16. The relative energy profile of Na escape from Cu-V (a) and S-V (b) diffusion path (c).

Fig. S17. The fluctuations of formation energy as a function of X in $Cu_2S_4Na_x$. The red dash lines form the convex hull for stable phases in the whole composition range of $Cu_2S_4Na_x$.

Fig. S18. Rate of lattice change in a and b (red) direction as the function of Na content in $Cu_2S_4Na_x$.

Fig. S19. The simulation of transmission electron microscope (TEM) with the stoichiometries of Cu_2S_4 , $Cu_2S_4Na_2$, $Cu_2S_4Na_4$, $Cu_2S_4Na_6$, and $Cu_2S_4Na_8$.

Tab. S1. Integrated decomposed DOS for S-s, S-p, Cu-s, Cu-p, and Cu-d orbitals, in units of states per cell.

	S-s	S-p	Cu-s	Cu-p	Cu-d
Cu_2S_4	0.650	8.669	0.525	0.736	18.949
$Cu_2S_4Na_8$	0.684	8.227	1.011	0.868	18.314

Tab. S2. Bond length and slab thickness of the α -CuS₂ sheet at various Na coverage and after de-sodiation.

X in Cu ₂ S ₄ Na _x	S-S bond length (Å)	S-Cu bond length (Å)	slab thickness (Å)
0	2.042	2.360	4.336
1	2.151	2.386	4.386
2	2.175	2.408	4.564
3	2.167	2.406	4.547
4	2.166	2.418	4.559
5	2.166	2.403	4.542
6	2.176	2.406	4.544
7	2.168	2.406	4.537
8	2.171	2.408	4.545
After de-sodiation	2.041	3.367	4.335