Electronic Supporting Information

Achieving pure yellow, high-efficiency (EQE > 20%) electroluminescence from ultrathin emitting-layer (0.6~2.0 nm) OLEDs having a rare aggregation-free heteroleptic platinum complex

Hagos Tesfay Kidanu,^{†,‡,§} and Chin-Ti Chen*,[†]

[†] Institute of Chemistry, Academia Sinica, Taipei 11529, Taiwan, Republic of China.

[‡]Sustainable Chemical Science and Technology, Taiwan International Graduate Program (TIGP),

Academia Sinica, Taipei 11529, Taiwan, Republic of China.

[§]Department of Applied Chemistry, National Chiao Tung University, Hsinchu 30050, Taiwan, Republic of China.

Figure S1. ¹H NMR spectrum of **FBNNND** (400 MHz, CDCl₃).

Figure S2. ¹³C NMR spectrum of FBNNND (125 MHz, CDCl₃).

Figure S3. HR-MS spectrum of FBNNND.

— 11

~ 4

Table S1.	Comparison of select	ed geometric param	eters of FBNNND th	eoretically and
experime	ntally.			

EDNININD	Selected bond lengths (Å)						
FDININD	Pt-N(1)		Pt-C	Pt-0	С	Pt-N(qn)	
DFT ^a	2.028		2.025	2.14	1	2.068	
X-ray ^b	2.001		2.020	2.08	31	2.047	
FDNININD	Selected bond angles (°)						
FD ININ I N D	O-Pt-N(1)	N(1)-Pt-C	C-Pt-N(qn)	N(qn)-Pt-O	N1-Pt-Nqn	O-Pt-C	
DFT ^a	96.83	79.48	105.28	78.92	172.95	173.38	
X-ray ^b	94.45	79.95	104.96	80.78	174.26	173.77	
^a Results obtained by DFT calculation using b3lyp method. ^b Results obtained experimentally							
from the single crystal X-ray structure.							

. 4

...

States	λ (nm)	MO transition contributions
	414.6	HOMO \rightarrow LUMO (64%)
\mathbf{S}_1		HOMO-1 \rightarrow LUMO (26%)
		HOMO-2 \rightarrow LUMO (10%)
S	397.0	HOMO-1 \rightarrow LUMO (64%)
\mathbf{S}_2		HOMO \rightarrow LUMO (28%)
т	516.0	HOMO-1 \rightarrow LUMO (59%)
11	510.0	HOMO \rightarrow LUMO (27%)
т	502.0	HOMO \rightarrow LUMO+1 (53%)
12	502.0	HOMO \rightarrow LUMO (32%)

Table S2. Calculated wavelengths, and molecular orbitals character of the optical transitions for the studied **FBNNND** complex in dichloromethane solvent.

Figure S4 Molecular packing of **FBNNND** inside a unit cell.

Figure S5 Voltage-dependent EL spectra of **FBNNND** OLED (1.0 nm ultrathin film) and **FPtOPhND** OLED (0.6 nm ultrathin film).

Figure S6 1D GIWAXS spectrum of **FBNNND** along the direction of Q_z (out-of-plane direction to the substrate) extracted from the corresponding 2D GIWAXS patterns (Figure 11). The corresponding *d*-spacing, $d = 2\pi/Q_z$.