## **SUPPORTING INFORMATION**

# Synthesis of monoclinic Ho, Tm:KLu(WO<sub>4</sub>)<sub>2</sub> microrods with high photothermal conversion efficiency *via* a thermal decomposition-assisted method

Albenc Nexha, Joan J. Carvajal,\* Maria Cinta Pujol, Francesc Díaz and Magdalena Aguiló Universitat Rovira i Virgili, Departament Química Física i Inorgànica, Física i Cristal·lografia de Materials i Nanomaterials (FiCMA-FiCNA)-EMaS, Campus Sescelades, E-43007, Tarragona, Spain

\*joanjosep.carvajal@urv.cat

**Table S1.** ICP-OES analysis of the dopant concentration of  $Ho^{3+}$ ,  $Tm^{3+}$  in  $KLu(WO_4)_2$  rods synthesized by the thermal decomposition-assisted methodology.

| Material                                                                             | Ho³+ (w/w %) | Tm <sup>3+</sup> (w/w %) | Lu <sup>3+</sup> (w/w %) |  |  |
|--------------------------------------------------------------------------------------|--------------|--------------------------|--------------------------|--|--|
| KLu <sub>1-x-y</sub> Ho <sub>x</sub> Tm <sub>y</sub> (WO <sub>4</sub> ) <sub>2</sub> | x (%)        | у (%)                    | 1-x-y (%)                |  |  |
| x=0.03, y=0.05                                                                       | 2.2          | 3.57                     | 94.22                    |  |  |
| x=0.01, y=0.1                                                                        | 0.98         | 9.8                      | 89.22                    |  |  |



**Fig. S1** XRPD patterns of the seeds and the final products (calcined at 1023 K for 2 h as an example) obtained in the synthesis of undoped KLuW particles *via* the thermal decomposition-assisted method. The KLuW reference pattern (JCPDS file 54-1200) was included for comparison.



**Fig. S2** Crystalline habit of the undoped KLuW rods, transmission electron microscopic image and morphology predicted by the SHAPE software.



**Fig. S3** (a) XRPD pattern of undoped KLuW and doped Ho, Tm:KLuW microrods. (b) Raman spectroscopy of undoped KLuW and doped Ho, Tm:KLuW microrods. (c) TEM image of doped Ho, Tm:KLuW microrods.



**Fig. S4** Evolution with temperature of the intensity of the emission bands in the visible of Ho, Tm doped KLuW microrods containing: (a) 3 mol% Ho<sup>3+</sup>, 5 mol% Tm<sup>3+</sup>, and (b) 1 mol% Ho<sup>3+</sup>, 10 mol% Tm<sup>3+</sup>. Evolution with temperature of the intensity of the emission bands in the NIR of Ho, Tm:KLuW rods containing: (c) 3 mol% Ho<sup>3+</sup>, 5 mol% Tm<sup>3+</sup> and (d) 1 mol% Ho<sup>3+</sup>, 10 mol% Tm<sup>3+</sup>.



**Fig. S5** Temperature dependence of the three possible intensity ratios in the NIR of Ho, Tm doped KLuW microrods containing: (a) 3 mol% Ho<sup>3+</sup>, 5 mol% Tm<sup>3+</sup> and (b) 1 mol% Ho<sup>3+</sup>, 10 mol% Tm<sup>3+</sup>.



**Fig. S6** TEM images of Ho, Tm doped KLuW particles synthesized via four different synthetic methodologies: (a) MW=microwave-assisted solvothermal method, (b) CA=conventional autoclave solvothermal method, (c) P=modified sol-gel Pechini method, and (d) TD=thermal decomposition-assisted method.



**Fig. S7** Sedimentation test of Ho, Tm doped  $KLu(WO_4)_2$  nanocrystals synthesized from the modified sol-gel Pechini, solvothermal (MW as an example) and thermolysis methodologies.

**Table S2** Fitting parameters and thermometric performance of Ho, Tm doped KLuW microrods synthesized via the thermaldecomposition-assisted method, operating in different spectral regimes and on the temperature range 293 K-473 K.

#### **Based on Equation 1**

| Doping                | Regime | Δ <sub>0</sub> | В      | α     | R <sup>2</sup> | S <sub>abs</sub><br>(K <sup>-1</sup> ) | S <sub>rel</sub><br>(% K <sup>-1</sup> ) | <sup>δT</sup> (K) |
|-----------------------|--------|----------------|--------|-------|----------------|----------------------------------------|------------------------------------------|-------------------|
| 3 mol% Ho, 5 mol% Tm  | VIS    | 3.95           | 0.0066 | 0.011 | 0.98           | 0.013                                  | 0.25                                     | 1.97              |
| 1 mol% Ho, 10 mol% Tm | VIS    | 0.55           | 10312  | 0.032 | 0.94           | 0.028                                  | 1.9                                      | 0.26              |

#### **Based on Equation 5**

| Doping                | Regime | В     | С     | $\frac{\Delta E_1 - \Delta E_2}{(\text{cm}^{-1})}$ | R <sup>2</sup> | S <sub>abs</sub><br>(K <sup>-1</sup> ) | S <sub>rel</sub><br>(% K <sup>-1</sup> ) | <sup>δT</sup> (K) |
|-----------------------|--------|-------|-------|----------------------------------------------------|----------------|----------------------------------------|------------------------------------------|-------------------|
| 3 mol% Ho, 5 mol% Tm  | NIR    | 8.07  | 203.9 | 141.7                                              | 0.99           | 0.0096                                 | 0.24                                     | 2.1               |
| 1 mol% Ho, 10 mol% Tm | NIR    | 10.38 | 36.6  | 25.4                                               | 0.90           | 0.0039                                 | 0.04                                     | 11.7              |

**Table S3** Fitting parameters, thermometric performance, and photothermal conversion efficiency of Ho, Tm doped KLuW particles synthesized via four different synthetic methodologies (P = modified sol-gel Pechini method; MW = microwave-assisted solvothermal method; CA = conventional autoclave solvothermal method; and TD = thermal decomposition-assisted method).

| Doping                   | Synthesis | Size<br>(nm) | В             |   | С               | $\frac{\Delta E_1 - \Delta E_2}{(\text{cm}^{-1})}$ | R <sup>2</sup> | S <sub>abs</sub><br>(K <sup>-1</sup> ) | S <sub>rel</sub><br>(% K <sup>-1</sup> ) | δΤ<br><b>(K)</b> | η<br>(%) | Ref.         |
|--------------------------|-----------|--------------|---------------|---|-----------------|----------------------------------------------------|----------------|----------------------------------------|------------------------------------------|------------------|----------|--------------|
| 1 mol% Ho,<br>10 mol% Tm | Ρ         | 2000         | 155.6<br>15.1 | ± | 773.2<br>± 30.7 | 537                                                | 0.99           | 0.097                                  | 0.90                                     | 0.55             | 40       | 1            |
| 1 mol% Ho,<br>10 mol% Tm | MW        | 12           | 8.5<br>0.3    | ± | 159.7<br>± 9.9  | 111                                                | 0.98           | 0.0091                                 | 0.18                                     | 2.6              | 45       | 2            |
| 1 mol% Ho,<br>10 mol% Tm | CA        | 16           | 5.1<br>0.7    | ± | 172.7<br>± 44.8 | 120                                                | 0.99           | 0.0056                                 | 0.20                                     | 2.4              | 43       | 2            |
| 1 mol% Ho,<br>10 mol% Tm | TD        | 1480         | 12.1<br>0.66  | ± | 172.7<br>± 17   | 60                                                 | 0.92           | 0.009                                  | 0.1                                      | 5                | 41       | This<br>Work |
| 3 mol% Ho,<br>5 mol% Tm  | Ρ         | 2000         | 13.2<br>1.2   | ± | 318.2<br>± 29.3 | 221                                                | 0.95           | 0.016                                  | 0.37                                     | 1.34             | 30       | 1            |
| 3 mol% Ho,<br>5 mol% Tm  | MW        | 12           | 3.7<br>0.1    | ± | 198.9<br>± 10.8 | 138                                                | 0.98           | 0.0044                                 | 0.23                                     | 2.1              | 33       | 2            |
| 3 mol% Ho,<br>5 mol% Tm  | CA        | 16           | 4 ± 0.1       | 1 | 284.9<br>± 10.1 | 198                                                | 0.99           | 0.0051                                 | 0.33                                     | 1.5              | 36       | 2            |
| 3 mol% Ho,<br>5 mol% Tm  | тD        | 1480         | 12.5<br>0.2   | ± | 354.6<br>± 5.1  | 247                                                | 0.99           | 0.015                                  | 0.41                                     | 1.2              | 66       | This<br>Work |

### References

1. A. Nexha, J. J. Carvajal, M. C. Pujol, F. Díaz and M. Aguiló, J. Mater. Chem. C, 2020, 8, 180-191.

2. A. Nexha, M. C. Pujol, J. J. Carvajal, F. Díaz and M. Aguiló, Submitted at Nanomaterials