High Quantum Yield Boron-doped Carbon Dots: Ratiometric Fluorescent Probe for Highly Selective and Sensitive Detection of Mg²⁺ ions

Hari Krishna Sadhanala, [#] Sudhakar Pagidi, [#] Aharon Gedanken^{*}

Department of Chemistry, Bar-Ilan Institute for Nanotechnology and Advanced Materials (BINA), Bar-Ilan-University, Ramat-Gan 52900, Israel

Authors contributed equally

*Corresponding Author E-mail: gedanken@biu.ac.il (A.G)

Figure S1. Fluorescence spectra of BCDs solution without and with 200 µl of water content.

Figure S2. Selectivity of BCDs sensor towards different metal ions based on PL quenching at .

Figure S3. (a and b) Optical images of BCDs without and with Mg^{2+} ion.

Figure S4. DLS spectra of BCDs without and with Mg^{2+} ion.

Sensing probes	Fluorescence switch	Detection limit	Reference
calix[4]arene diamide	Turn-on	0.138 μM	(1)
DCHQ5	Turn-on	0.2 μΜ	(2)
PEBBLE Nanosensor	Ratiometric emission	340 µM	(3)
o - hydroxyl Schiff base	Turn-on	1.47 μM	(4)
Coumarin-bispicolylamine (CBP)	Ratiometric emission	1 μM	(5)
1, 8-naphthalimide derivative	Turn off-Turn on	0.05 µM	(6)
BCDs	Ratiometric emission	39 µM	This work

Table S1. Comparison of Mg²⁺ ion sensing with different fluorescent probes

References

- K. C. Song, M. G. Choi, D. H. Ryu, K. N. Kim and S. K. Chang, *Tetrahedron Lett.*, 2007, 48, 5397–5400.
- A. Sargenti, G. Farruggia, N. Zaccheroni, C. Marraccini, M. Sgarzi, C. Cappadone, E. Malucelli, A. Procopio, L. Prodi, M. Lombardo and S. Iotti, *Nat. Protoc.*, 2017, 12, 461–471.
- E. J. Park, M. Brasuel, C. Behrend, M. A. Philbert and R. Kopelman, *Anal. Chem.*, 2003, 75, 3784–3791.
- T. Yu, P. Sun, Y. Hu, Y. Ji, H. Zhou, B. Zhang, Y. Tian and J. Wu, *Biosens. Bioelectron.*, 2016, 86, 677–682.
- J. Kang, H. K. Kang, H. Kim, J. Lee, E. J. Song, K. D. Jeong, C. Kim and J. Kim, *Supramol. Chem.*, 2013, 25, 65–68.
- H. zhang, C. Yin, T. Liu, J. Chao, Y. Zhang and F. Huo, *Dye. Pigment.*, 2017, 146, 344– 351.

Method	Lower detection limit	Ref.
Atomic absorption spectroscopy(AAS)	10 mM	1
ICP-MS	0.7 mM	2
³¹ P-NMR	0.66 mM	3
Null-point techniques	0.33 mM	4
Ion selective electrode	0.1 mM	5
Fluorescence spectrofluorometer (This work)	0.075 mM	

Table S2. Comparison of lower detection limits of different methods for Mg²⁺ ion

References

- 1. M. Liu, X. Yu, M. Li, N. Liao, A. Bi, Y. Jiang, S. Liu, Z. Gong, and W. Zeng, *RSC Adv.*, 2018, 8, 12573-12587.
- 2. J. M. Harrington, D. J. Young, A. S. Essader, S. J. Sumner, and K. E. Levine, *Biol. Trace Elem. Res.*, 2014, 160, 132–142.
- 3. W. Zhang, A. C. Truttmann, D. Lüthi, and J. A. S. McGuigan, *Anal. Biochem.*, 1997, **251**, 246–250.
- 4. B. E. Corkey, J. Duszynski, T. L. Rich, B. Matschinsky, and J. R. Williamson, *J. Biol. Chem.*, 1986, **261**, 2567–2574.
- 5. P. Flatman and V. L. Lew, Nature, 1977, 267, 360-362.