Supporting Information for

High mobility organic semiconductor for constructing high efficiency carbon nitride heterojunction photocatalysts

Yan Yi,[†]a Siyu Wang,[†]a Hantang Zhang,^{*a} Jie Liu,^c Xiuqiang Lu,^d Lang Jiang,^c Chengji Sui,^a Hai Fan,^a Shiyun Ai^{*a} and Jianwu Sun^{*b}

^aCollege of Chemistry and Material Science & College of Resources and Environment, Shandong Agriculture University, TaiAn 271018, China. E-mail: htzhang@sdau.edu.cn, ashiy@sdau.edu.cn ^bDepartment of Physics, Chemistry and Biology (IFM), Linköping University, Linköping SE-58183, Sweden. E-mail: jianwu.sun@liu.se ^cBeijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China. ^dSchool of Ocean Science and Biochemistry Engineering, Fuqing Branch of Fujian Normal University, Fuqing 350300, China. [†] Equal contribution

1. Experimental Section

1.1 Molecular structure and coordination environment of CuPc

Fig. 1 Molecular structure of CuPc.

CuPc has a special two-dimensional conjugated π -electronic structure. In the molecular structure of CuPc, the Cu atom is surrounded by 4 N atoms. Copper is connected with two of the N atoms by ionic bonds, and with the other two N atoms by coordination bonds.

1.2 Synthsis of bulk CN

Bulk CN was synthzied by thermal condensation of urea. Typically, 25g urea was put in a sealed crucible and then heated to 550 °C at a speed of 3°/min in a muffle furnace. The tempreture was maintained at 550 °C for 4 hours and then cooled down to room tempreture.

1.3 Two-step method for fabrication of CN nanosheet

Step 1: Secondary calcination. Bulk CN was first grinded by a mortar. Then CN powders were put in a open crucible to allow the materials to be well exposed to air. Then it was heated to 520 °C at a speed of 5°C/min and maintained at 520 °C for 2 hours.

Step 2: High-power ultrasonic exfoliation. Typically, 50mg CN powders obtained after step 1 were dispersed in 10ml IPA. Then CN nanosheets were obtained by ultrasonic treatment of the suspension using a 500w ultrasonic apparatus.

1.4 Preparation of CN/CuPc heterojunction photocatalysts

A certain amount of CuPc (0 wt%, 3 wt%, 5 wt%, 7 wt%, 10 wt%) was added into the IPA suspension of CN nansheet. The hybrid suspension was ultrasonic for 2 hours at low power of 50w. Then the well mixed suspension was centrifuged at 5000r/min for 10min. The supernatant was discarded and CN/CuPc heterojunction photocatalysts were obtained.

1.5 Electrochemical characterization

1.5.1 Photocurrent response of CN/CuPc

0.5M Na₂SO₄ solution was used as the electrolyte. 2mg/ml CN (or CN/CuPc) isopropanol suspension was dripped onto the ITO electrode and baked dry with an infrared lamp. A 300w Xenon lamp was used as the light source.

1.5.2 EIS of CN and CN/CuPc

5mM [Fe(CN)₆]^{3-/4-} (1:1) solution containing 0.1 M KCl was used as the electrolyte. 2mg/ml CN (or CN/CuPc) isopropanol suspension was dripped onto the glassy carbon electrode and baked dry with an infrared lamp. ESI was tested using a three-electrode system (Reference electrode: saturated calomel electrode).

1.5.3 Mott-Schottky test of CN and CuPc

 $0.5M Na_2SO_4$ solution was used as the electrolyte. 2mg/ml CN (or CuPc) isopropanol suspension was dripped onto the glassy carbon electrode and baked dry with an infrared lamp. The Mott-Schottky test was conducted using a three-electrode system (Reference electrode: saturated calomel electrode).

2. Characterization

2.1 Nitrogen adsorption-desorption isotherms

Fig. S2 The nitrogen adsorption–desorption isotherms of Bulk CN and CN after secondary calcination. (a) BET and (b) BJH.

Fig. S3 XRD of CN before and after ultrasonic treatment.

2.3 AFM characterization of CN nanosheets

Fig. S4 (a) AFM height image of CN nanosheet and (b) corresponding height results.

	Ē						Map Sum Spectrum		
cps/eV	2-[N	Element	Line Type	k factor	Absorption Correction	Wt%	Wt% Sigma	
	- E I		С	K series	2.50675	1.00	52.84	0.45	
	Ξ.		N	K series	3.14061	1.00	46.62	0.45	
	1-		Cu	K series	1.39155	1.00	0.54	0.07	
	Ξ.		Total:				100.00		
	, <u> </u>	Cu		Cu	Cu				
	0		5		10		15		keV

Fig. S5 Sum spectrum of TEM assisted EDS of CN/CuPc heterojunction (7 wt% CuPc).

2.5 N XPS of CN and CN/CuPc heterojunction

Fig. S6 N 1s XPS of CN and CN/CuPc.

2.6 PHE measurements of CN and CN/CuPc heterojunctions

Fig. S7 PHE measurements of CN and CN/CuPc heterojunctions. TEOA was used as hole sacrificial agent and no cocatalyst was used. A 300w Xenon lamp was used as the light source.

Photocatalysts	Hydrogen Evolution Rate (µmol g ⁻¹ h ⁻¹)
CN	15.2
CN+3%CuPc	29.9
CN+5%CuPc	64.9
CN+7%CuPc	71.2
CN+10%CuPc	16.9

Table S1 Summary of the PHE rates derived from Fig. S7

2.7 XRD of CN/CuPc before and after PHE test

Fig. S8 XRD of CN/CuPc before and after the PHE test.

2.8 PHE testing irradiated at monochromatic light

Fig. S9 PHE testing of CN/CuPc irradiated at (a) 600nm and (b) 420nm.

2.9 PHE testing of pure CuPc

Fig. S10 PHE testing of pure CuPc with and without Pt.