
Supporting Information for Publication

Interfacial fluorine migration-induced low leakage conduction in PVA based high-k composites with V₂C MXene-SWCNT switchboard-like ceramic via ab initio MD simulations

Qihuang Deng, Binghe Chen, Maolin Bo*, Yefeng Feng*, Yuehao Huang, Junquan Zhou

In Fig. S1a, selection area electron diffraction (SAED) result of hybrid filler was given based on JEM-200CX. In Fig. S1b, dielectric relaxation of composites (two systems with 5 wt % fillers) was found. In Fig. S1c, mono-polar electric hysteresis loops (D-E loops) of composites at 10 Hz were obtained based on ferroelectricanalyzer (Premiere II, Radiant). Good loop shape was gained in ternary composite with 5 wt % hybrid filler. Huge leakage conduction based on fat loop was verified in binary composite with 5 wt % CNTs. In Fig. S1d, energy storage traits of two composites with 5 wt % fillers were displayed. Optimal ternary composite could have the improved energy storage properties compared with binary composite and neat polymer. In Figs. S1e and S1f, the calculated electron-transmission spectra of F-free and F-bearing CNTs were shown based on GGA-PBE of RPBE algorithm, respectively. By comparison, the results here were in high accordance with results in Figs. 11e and 11f. Related conclusions in main text were further confirmed.

Figure S1. (a) SAED of hybrid filler, (b) dielectric relaxation of composites, (c) D-E loops of composites, (d) energy storage traits of composites, (e) electron-transmission spectra of F-free CNTs based on GGA-PBE of RPBE algorithm and (f) electron-transmission spectra of F-bearing CNTs based on GGA-PBE of RPBE algorithm.