Supporting Information

Multianvil High-Pressure/High-Temperature Synthesis and Characterization of magnetoelectric HP-Co₃TeO₆

Elisabeth Selb^a, Toni Buttlar^b, Oliver Janka^c, Martina Tribus^d, Stefan G. Ebbinghaus^b and Gunter Heymann^{*a}

X-ray powder diffraction and Rietveld refinement:

Figure SI1. XRD pattern (Mo- $K_{\alpha 1}$ radiation) and Rietveld refinement of HP-Co₃TeO₆ ($R_{exp} = 3.41$, $R_{wp} = 6.40$, $R_p = 4.83$, and GOF = 1.88). The curve of the experimental and calculated diffraction data are plotted with an offset of 2500 counts to better separate them from the difference curve.

Additional crystal structure data:

Table SI1: Anisotropic displacement parameters ($Å^2$) for HP-Co₃TeO₆, (*R*3, standard deviations in parentheses).

Atom	<i>U</i> ₁₁	U ₂₂	U ₃₃	U ₂₃	<i>U</i> ₁₃	<i>U</i> ₁₂
Те	0.00439(9)	0.00439(9)	0.0049(2)	0	0	0.00220(5)
Col	0.0069(2)	0.0069(2)	0.0070(4)	0	0	0.0034 (1)
Co2	0.0064(2)	0.0064(2)	0.0099(12)	0	0	0.00322(8)
Co3	0.0062(2)	0.0062(2)	0.0103(5)	0	0	0.0031 (1)
01	0.006(1)	0.008(2)	0.008(1)	-0.0007(8)	0.0002(8)	0.0032(9)
O2	0.008(2)	0.007 (2)	0.0071(9)	-0.0013(8)	-0.0022(8)	0.003 (1)

Bond lengths of HP- Co ₃ TeO ₆			Bond lengths of Ni ₃ TeO ₆ ¹			6 ¹	Bond length discrepancy per octhahedra for HP-Co ₃ TeO ₆ / Ni ₃ TeO ₆		
Te:	01	195.7(4)	3×	Te:	01	192.3 (5)	3×	4.3/3.3	
	O2	191.4(3)	$3 \times$		O2	195.6 (5)	3×		
Col:	01	223.0(3)	$3 \times$	Ni1:	01	203.2 (6)	3×	18.1/ 11.6	
	O2	204.9(4)	$3 \times$		O2	214.8 (5)	3×		
Co2:	01	203.7(4)	$3 \times$	Ni2:	01	204.0 (6)	3×	18.7/ 9.9	
	O2	222.4(3)	$3 \times$		O2	213.9 (7)	3×		
Co3:	01	203.2(4)	$3 \times$	Ni3:	01	200.8 (6)	3×	15.7/ 10.2	
	02	218.9(3)	3×		02	211.0 (5)	3×		

Table SI2. Selected interatomic distances (pm) of HP-Co₃TeO₆ and Ni₃TeO₆¹ as well as bond length discrepancies (pm) within the TeO₆-, CoO₆- and NiO₆-octahedra (standard deviations

in parentheses).

Table SI3. Selected interatomic angles (°) of HP-Co₃TeO₆ and Ni₃TeO₆¹. Interatomic angle discrepancies (°), calculated on the deviation from the ideal value, are given in column 3 (standard deviations in parentheses).

Interatomic angles of HP-Co ₃ TeO ₆			Interaton Ni ₃	nic angles of TeO ₆ ¹	Interatomic angle discrepancy for HP- Co ₃ TeO ₆ / Ni ₃ TeO ₆	
01-Te-01	84.2(2)	3×	O1-Te-O1	83.6(2)	3×	5.8/6.4
O1-Te-O2	87.1(2)	3×	O1-Te-O2	86.8(3)	3×	2.9/ 3.2
O1-Te-O2	91.4(2)	3×	O1-Te-O2	91.8(3)	3×	1.4/ 1.8
O1-Te-O2	170.6(2)	3×	O1-Te-O2	169.8(3)	3×	9.4/ 10.2
O2-Te-O2	96.7(2)	3×	O2-Te-O2	97.0(3)	3×	3.3/ 3.0
O1-Co1-O1	72.1(2)	3×	01-Ni1-O1	74.8(2)	3×	17.9/ 15.2
O1-Co1-O2	86.9(2)	3×	01-Ni1-O2	87.8(3)	3×	3.1/2.2
O1-Co1-O2	88.3(2)	3×	01-Ni1-O2	89.5(3)	3×	1.7/ 0.5
O1-Co1-O2	154.6(2)	3×	01-Ni1-O2	159.0(3)	3×	25.4/21.0
O2-Co1-O2	106.9(2)	3×	O2-Ni1-O2	104.0(3)	3×	16.9/ 14.9
O1-Co2-O1	101.4(2)	3×	01-Ni2-O1	99.5(3)	3×	11.4/ 9.5
O1-Co2-O2	87.3(2)	3×	01-Ni2-O2	87.9(3)	3×	2.7/ 2.1
O1-Co2-O2	88.9(2)	3×	01-Ni2-O2	89.9(3)	3×	2.1/ 1.1

O1-Co2-O2	164.7(2)	3×	01-Ni2-O2	166.9(3)	$3 \times$	15.3/ 13.1
O2-Co2-O2	80.2(2)	3×	O2-Ni2-O2	81.2(3)	$3 \times$	9.8/8.8
01 0 0 01		2	01 112 01			1 (1/10 -
01-Co3-01	106.4(2)	$3\times$	01-N13-01	103.5(3)	3×	16.4/13.5
$01 C_{03} 02$	78 3(2)	3×	01 Ni3 02	80.7(3)	3×	127/03
01-003-02	78.3(2)	J^	01-1113-02	80.7(3)	J^	12.11 9.5
O1-Co3-O2	90.8(2)	$3 \times$	01-Ni3-O2	91.5(3)	$3 \times$	0.8/1.5
O1-Co3-O2	159.6(2)	$3 \times$	01-Ni3-O2	162.8(3)	3×	20.4/ 17.2
		_			_	
O2-Co3-O2	81.8(2)	$3\times$	O2-Ni3-O2	82.6(3)	3×	8.2/7.4

Band gap determination

Figure SI2. Tauc plot for the band gap determination with n = 2.

Low field magnetic measurements

Figure SI3. Zero-field-cooled / field-cooled data (ZFC/FC) of HP-Co₃TeO₆ measured at 100 Oe.

Specific heat

Figure SI4. Temperature dependence of the specific heat of HP-Co₃TeO₆ at $H_{dc} = 0$ Oe, 100 Oe and 10 kOe plus Einstein-Debye fit (red line) of the phonon contribution. Values at 0 Oe and 100 Oe are very similar and therefore not distinguishable.

Magnetoelectric properties

Figure SI5. Field dependence of the perpendicular magnetoelectric coefficient measured at different temperatures. Values recorded above 20 K are depicted with an offset.

Figure SI6. Amplitude, field position and full width at half maximum of the α_{ME} peak measured in perpendicular geometry.

1. R. Becker and H. Berger, Acta Crystallogr. E, 2006, 62, i222-i223.